000912358 001__ 912358
000912358 005__ 20240708133554.0
000912358 0247_ $$2doi$$a10.1080/09276440.2022.2111800
000912358 0247_ $$2ISSN$$a0927-6440
000912358 0247_ $$2ISSN$$a1568-5543
000912358 0247_ $$2WOS$$aWOS:000838669100001
000912358 037__ $$aFZJ-2022-05549
000912358 082__ $$a540
000912358 1001_ $$0P:(DE-HGF)0$$aLuo, Fang$$b0
000912358 245__ $$aMicrostructures and mechanical properties of α-Al 2 O 3W and MWCNTs hybrid reinforced laminated Cu matrix composites
000912358 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2023
000912358 3367_ $$2DRIVER$$aarticle
000912358 3367_ $$2DataCite$$aOutput Types/Journal article
000912358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678878741_13457
000912358 3367_ $$2BibTeX$$aARTICLE
000912358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912358 3367_ $$00$$2EndNote$$aJournal Article
000912358 500__ $$aKein Postprint verfügbar
000912358 520__ $$aThe balance between strength and toughness is of great importance. In this paper, the microstructure and properties of laminated composites in X-Y direction were characterized and analyzed. The effect of the content of α-Al2O3w and MWCNTs on the laminated structure and properties was analyzed, and strengthening mechanisms and toughening mechanisms of the material were discussed. The laminated structure of traditional Cu matrix composites was designed by a combination of flake powder metallurgy and SPS sintering. Compared with spherical Cu, flake Cu can increase the interface contact between matrix and reinforcement phase, which is conducive to the formation of self-assembly of laminated structure in SPS sintering process. The strength and compressive elongation of 1.0 wt.% MWCNTs-1.0 wt.% α-Al2O3w/Cu hybrid laminated composites were the best, reaching 453.43 MPa, 50%, respectively. This is mainly due to the composites containing MWCNTs less than 1.0 wt.% had uniform microstructure and good interfacial bonding, and the loads were effectively transferred from Cu matrix to MWCNTs and α-Al2O3w. At the same time, the large grain size in the plane is favorable for dislocation movement, while the interlayer interface and nanocrystals hinder the combination of dislocation movement perpendicular to the plane to achieve a balance of strength and toughness.
000912358 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000912358 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912358 7001_ $$00000-0002-6703-9116$$aJiang, Xiaosong$$b1
000912358 7001_ $$0P:(DE-HGF)0$$aTan, Wenyue$$b2
000912358 7001_ $$0P:(DE-HGF)0$$aSun, Hongliang$$b3
000912358 7001_ $$0P:(DE-HGF)0$$aZhang, Yali$$b4
000912358 7001_ $$0P:(DE-HGF)0$$aFang, Yongjian$$b5
000912358 7001_ $$0P:(DE-Juel1)186824$$aShu, Rui$$b6$$eCorresponding author$$ufzj
000912358 7001_ $$0P:(DE-HGF)0$$aCheng, Huichao$$b7
000912358 773__ $$0PERI:(DE-600)2057782-5$$a10.1080/09276440.2022.2111800$$gp. 1 - 20$$n4$$p 341-360$$tComposite interfaces$$v30$$x0927-6440$$y-
000912358 909CO $$ooai:juser.fz-juelich.de:912358$$pVDB
000912358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186824$$aForschungszentrum Jülich$$b6$$kFZJ
000912358 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000912358 9141_ $$y2023
000912358 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000912358 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000912358 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
000912358 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPOS INTERFACE : 2022$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
000912358 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
000912358 920__ $$lyes
000912358 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000912358 980__ $$ajournal
000912358 980__ $$aVDB
000912358 980__ $$aI:(DE-Juel1)IEK-4-20101013
000912358 980__ $$aUNRESTRICTED
000912358 981__ $$aI:(DE-Juel1)IFN-1-20101013