A System-on-Chip Based Hybrid Neuromorphic Compute (HNC) Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking **Neural Networks**

Guido Trensch^{1,3} and Abigail Morrison^{1,2,3}

¹Simulation and Data Laboratory Neuroscience, ²Institute of Neuroscience and Medicine (INM-6), JARA-Institute Brain Structure-Function Relationship (JBI-1 / INM-10), Research Centre Jülich, ³Department of Computer Science 3 -Software Engineering, RWTH Aachen University

https://doi.org/10.3389/fninf.2022.884033

ADVANCED OMPUTING A RCHITECTURES

Goal

Benefiting from the continued advances in semiconductor technology, in recent years, programmable device technology and tools have greatly increased.

Proof of Concept: Prototypical implementation of an AMD Xilinx System-on-Chip (SoC) based hybrid softwarehardware architecture approach for a neuromorphic compute node capable of meeting the high demands for modeling and simulation in neuroscience.

HNC Node High-Level Architecture

Simulation paradigm

- Hybrid strategy for time-discrete neural network simulations of point neuron models:
 - time-driven neuron state update (blue data paths) at fixed intervals, $\Delta t = 0.1 ms$
 - event-driven synapse update (red data paths)

Performance

- Exploiting the tight coupling of an Application Processing Unit (APU) with a Field Programmable Gate Array (FPGA) located on the same chip.
- · Off-loading of performance critical algorithms to programmable logic.
- Parallelization by distributing the computational load over 16 processing units (P1, P2, ..., P16).
- Data locality of state variables by storing them in fast on-chip block RAM memories (BRAMs).
- · Latency hiding by exploiting the true-dual port capability of BRAMs.

Flexibility

- ODE pipeline module can be replaced to implement different neuron and synapse models.
- · Flexibility in the choice of data types.
- Connectivity data is stored in external memory, thus synaptic weights are adjustable and accessible to the APU.
- · Non-critical tasks are executed in software by the APU.

Workload Model

From the workload perspective, it can be considered equivalent.

Indicator for the computational workload: average number of spikes per time step k

$$\bar{\nu}_{\mathbf{k}} = \frac{h}{T} \sum_{\mathbf{N}} n_{\mathbf{sp}}(T) = N \bar{\nu} h$$

Param	HNC Node		
number of compute nodes	M	N/A	
total number of neurons	N	N/A	
number of neurons per compute node	$N^{ m M}$	max. 1024	
connection probability	ϵ	< 0.1	
presynaptic neuron's max. number of connections per node	$C^{\mathcal{M}} = \epsilon N^{\mathcal{M}} = \frac{\epsilon N}{M}$	max.128	
spike count of neuron n in interval T	$n_{\rm sp}(T)$	N/A	
temporal resolution of the simulation	h	0.1 ms	

System-Level Architecture

Software system executed on the APU

- Orchestrates the overall node operation.
- · A minimal C-API provides Create(), Connect(), and Simulate() function calls.
- Implemented as bare-metal application in C.

Handler

	Console Driver	Register Access	DMA Driver	Light Weight TCP/IP Stack	
L					

Performance Model

Acceleration factors derived from operating latencies.

Single Node Performance

Simulate workload: consecutive simulation runs of 5 min simulated biological time with an increasing external offset current. $i_{\text{ext}} = \{-3.0pA, ..., +100pA\}$

Performance Characteristics

Parameters	Prototype	High Data Stream Parallelism	High Proc. Units Parallelism	Low Proc. Units Parallelism
number of data streams, DS	2	16	16	16
data stream latency, L_{DS}	110	14	14	14
number processing units, P	16	16	32	8
number of neurons per processing unit, N^{P}	64	64	32	128
ODE pipeline iteration latency, $IL_{ m N}$	64	64	32	128
Acceleration factors w/o communication				
maximum, $F_{ m S}^{ m MAX} = F_{ m S}(ar{ u}_{ m k} = 0)$	298.5	298.5	571.4	152.7
low workload, $F_{\rm S}(1.0)$	104.7	177.0	246.9	113.0
medium workload, $F_{\rm S}(10.0)$	16.9	84.5	97.7	66.5
high workload, $F_{\rm S}(20.0)$	8.8	52.4	58.4	45.6
Acceleration factors with communication				
maximum, $F_{\rm C}^{\rm MAX} = F_{\rm C}(0)$	119.8	119.8	148.1	86.6
low workload, $F_{\rm C}(1.0)$	67.6	91.7	107.5	70.9
medium workload, $F_{\rm C}(10.0)$	15.0	51.7	56.4	44.4
high workload, $F_{\rm C}(20.0)$	8.1	34.8	36.9	31.3
high workload, $F_{\rm C}(20.0)$	8.1	34.8	36.9	31.3

Prototyping Platform

AMD Xilinx Zyng®-7000 SoC ZC706

