000912374 001__ 912374
000912374 005__ 20230123110756.0
000912374 0247_ $$2doi$$a10.1021/acs.chemmater.2c02043
000912374 0247_ $$2ISSN$$a0897-4756
000912374 0247_ $$2ISSN$$a1520-5002
000912374 0247_ $$2Handle$$a2128/33113
000912374 0247_ $$2WOS$$aWOS:000892094900001
000912374 037__ $$aFZJ-2022-05565
000912374 041__ $$aEnglish
000912374 082__ $$a540
000912374 1001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b0$$eCorresponding author
000912374 245__ $$aUnderstanding Structural Incorporation of Oxygen Vacancies in Perovskite Cobaltite Films and Potential Consequences for Electrocatalysis
000912374 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2022
000912374 3367_ $$2DRIVER$$aarticle
000912374 3367_ $$2DataCite$$aOutput Types/Journal article
000912374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671626696_31167
000912374 3367_ $$2BibTeX$$aARTICLE
000912374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912374 3367_ $$00$$2EndNote$$aJournal Article
000912374 520__ $$aOwing to their excellent mixed-ionic and electronic conductivity, fast oxygen kinetics, and cost efficiency, layered oxygen-deficient perovskite oxides hold great potential as highly efficient cathodes for solid oxide fuel cells and anodes for water oxidation. Under working conditions, cation ordering is believed to substantially enhance oxygen diffusion while maintaining structural stability owing to the formation of double perovskite (DP), thus attracting extensive research attention. In contrast, the incorporation of oxygen vacancies and the associated vacancy ordering have rarely been studied at the atomic scale, despite their decisive roles in regulating the electronic and spin structures as well as in differentiating the crystal structure from DP. Here, atomic-resolution transmission electron microscopy is used to directly image oxygen vacancies and measure their concentration in (Pr,Ba)CoO3-δ films grown on SrTiO3 substrates. We find that accompanied by the presence of oxygen vacancy ordering at Co–O planes, the A–O (A = Pr/Ba) planes also exhibit a breathing-like lattice modulation. Specifically, as confirmed by first-principle calculations, the AO–AO interplanar spacings are found to be linearly correlated with the vacancy concentration in the enclosing Co–O planes. On this basis, potential consequences of oxygen occupancy for the catalytic properties of structurally pure PBCO phases are discussed. Through establishing a simple correlation of oxygen concentration with the easily achievable lattice measurement, our results pave a way for better understanding the structure–performance relationship of oxygen-deficient complex cobaltites used for electrocatalysis.
000912374 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000912374 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000912374 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912374 7001_ $$00000-0001-7070-6947$$aZhang, Feng$$b1
000912374 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b2
000912374 7001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b3
000912374 7001_ $$0P:(DE-HGF)0$$aZhang, Yanxing$$b4
000912374 7001_ $$00000-0002-5121-9841$$aWang, Dawei$$b5$$eCorresponding author
000912374 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b6$$ufzj
000912374 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b7
000912374 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b8
000912374 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.2c02043$$gp. acs.chemmater.2c02043$$n24$$p10373–10381$$tChemistry of materials$$v34$$x0897-4756$$y2022
000912374 8564_ $$uhttps://juser.fz-juelich.de/record/912374/files/LJin_SI_Understanding%20structural_submitted%20Kopie.pdf$$yOpenAccess
000912374 8564_ $$uhttps://juser.fz-juelich.de/record/912374/files/acs.chemmater.2c02043.pdf$$yOpenAccess
000912374 8767_ $$8APC600366788$$92022-11-17$$a1200186172$$d2022-11-21$$eHybrid-OA$$jZahlung erfolgt$$zUSD 4750,- ; FZJ-2022-04762
000912374 909CO $$ooai:juser.fz-juelich.de:912374$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b0$$kFZJ
000912374 9101_ $$0I:(DE-HGF)0$$60000-0001-7070-6947$$aExternal Institute$$b1$$kExtern
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b2$$kFZJ
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b3$$kFZJ
000912374 9101_ $$0I:(DE-HGF)0$$60000-0002-5121-9841$$aExternal Institute$$b5$$kExtern
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b6$$kFZJ
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000912374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b8$$kFZJ
000912374 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000912374 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000912374 9141_ $$y2022
000912374 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912374 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000912374 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000912374 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000912374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912374 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000912374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2021$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000912374 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCHEM MATER : 2021$$d2022-11-12
000912374 920__ $$lyes
000912374 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000912374 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
000912374 980__ $$ajournal
000912374 980__ $$aVDB
000912374 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000912374 980__ $$aI:(DE-Juel1)PGI-7-20110106
000912374 980__ $$aAPC
000912374 980__ $$aUNRESTRICTED
000912374 9801_ $$aAPC
000912374 9801_ $$aFullTexts