000912380 001__ 912380
000912380 005__ 20240708132742.0
000912380 037__ $$aFZJ-2022-05571
000912380 041__ $$aEnglish
000912380 1001_ $$0P:(DE-Juel1)194299$$aDwivedi, Shivam Kumar$$b0$$eCorresponding author$$ufzj
000912380 1112_ $$a76th Annual Technical Meeting of Indian Institute of Metals$$cRamoji Film City, Hyderabad$$d2022-11-13 - 2022-11-16$$gIIM-ATM 2022$$wIndia
000912380 245__ $$aFabrication and electrochemical performance of an air electrode BaCo0.4Fe0.4Zr0.2O3- δ composite in proton-conducting electrolysis cells
000912380 260__ $$c2022
000912380 3367_ $$033$$2EndNote$$aConference Paper
000912380 3367_ $$2DataCite$$aOther
000912380 3367_ $$2BibTeX$$aINPROCEEDINGS
000912380 3367_ $$2DRIVER$$aconferenceObject
000912380 3367_ $$2ORCID$$aLECTURE_SPEECH
000912380 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1670409267_24083$$xAfter Call
000912380 520__ $$aProton conducting fuel and electrolysis cells (PCF/ECs) emerge as a technology energy conversion (gas to power) and reliable large-scale electricity storage in the form of hydrogen gas (power to gas). The fabrication of proton conducting electrolysis cells is associated with numerous constraints arising during the fabrication and operation, such as electrode layer cracking, delamination, and warpage due to thermo-chemical mismatching. According to Løken, this mismatch should not exceed 50% to avoid thermal stress leading to cracks and delamination [1]. Forming a cer-cer or a cer-met composite of the electrode and the electrolyte is a common way to address these issues. Hence, in the present work we focus on the development and the electrochemical characterization of an air electrode cer-cer composite by direct mixing of BaCo0.4Fe0.4Zr0.2O3-δ (BCFZ442) and BaZr0.7Ce0.2Y0.1O3-δ (BZCY721) powders in various ratios (50:50, 70:30, and 90:10 wt % , respectively). We examined their chemical compatibility at various sintering temperatures through X-ray diffraction analysis.  We then screen-printed the so-prepared air electrode composite pastes on both sides of sintered BZCY721 pellets serving as the electrolyte, thus forming symmetric cells after sintering the electrodes. The cross-sectional scanning electron microscopic (SEM) views collected on the symmetrical cell before and after the operation/measurements showed a good adherence between the electrolyte and the electrode and an electrode/electrolyte interface with a porous structure, availing the accessible path for gas diffusion. The electrochemical impedance of the symmetrical cells was measured from 400-700 oC at 50 oC intervals by Impedance spectroscopy with wet air (3% H2O) in the frequency range of 0.1 Hz to 1 MHz.  The total cell resistance, which represents the polarization and ohmic resistance, decreases as expected with the temperature increases and it was studied as a function of the electrode composition as well.[1] Løken Andreas, Ricote Sandrine, Wachowski Sebastian, Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes, Crystals, 8(9), 365 (2018)
000912380 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000912380 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000912380 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000912380 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000912380 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b1$$ufzj
000912380 7001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b2$$ufzj
000912380 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b3$$eCorresponding author$$ufzj
000912380 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000912380 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5$$ufzj
000912380 7001_ $$0P:(DE-HGF)0$$aKumar, Ravi$$b6
000912380 8564_ $$uhttps://iimatm2022.in/index.php/about-atm/
000912380 909CO $$ooai:juser.fz-juelich.de:912380$$pVDB
000912380 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)194299$$aExternal Institute$$b0$$kExtern
000912380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b1$$kFZJ
000912380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b2$$kFZJ
000912380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b3$$kFZJ
000912380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000912380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b5$$kFZJ
000912380 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000912380 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
000912380 9141_ $$y2022
000912380 920__ $$lyes
000912380 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000912380 980__ $$aconf
000912380 980__ $$aVDB
000912380 980__ $$aI:(DE-Juel1)IEK-1-20101013
000912380 980__ $$aUNRESTRICTED
000912380 981__ $$aI:(DE-Juel1)IMD-2-20101013