000912434 001__ 912434
000912434 005__ 20240712113050.0
000912434 0247_ $$2doi$$a10.1002/batt.202200327
000912434 0247_ $$2Handle$$a2128/33029
000912434 0247_ $$2WOS$$aWOS:000853914500001
000912434 037__ $$aFZJ-2022-05613
000912434 082__ $$a620
000912434 1001_ $$0P:(DE-Juel1)165315$$aLoutati, Asmaa$$b0$$eCorresponding author
000912434 245__ $$aSurvey of Zirconium‐Containing NaSICON‐type Solid‐State Li+ Ion Conductors with the Aim of Increasing Reduction Stability by Partial Cation Substitution
000912434 260__ $$aWeinheim$$bWiley-VCH$$c2022
000912434 3367_ $$2DRIVER$$aarticle
000912434 3367_ $$2DataCite$$aOutput Types/Journal article
000912434 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673622254_26271
000912434 3367_ $$2BibTeX$$aARTICLE
000912434 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912434 3367_ $$00$$2EndNote$$aJournal Article
000912434 500__ $$aGrand names: BMBF-03XP0173A Kompetenzcluster Festbatt-OxideBMBF-13XP0434A Kompetenzcluster Festbatt2-Oxide
000912434 520__ $$aVarious compositions of the series Li1+xM3+xZr2−x(PO4)3 where M3+=Al3+, Sc3+, Y3+ were prepared by solution-assisted solid-state reaction, since they could have a higher reduction stability as solid electrolytes in lithium batteries than in germanium- or titanium-containing materials. The influence of substitution on crystallographic parameters, density, and ionic conductivity were investigated. The cation substitution of M3+ (M=Al, Sc, Y) for Zr4+ in LiZr2(PO4)3 stabilizes the rhombohedral NaSICON structure (space group urn:x-wiley:25666223:media:batt202200327:batt202200327-math-0001 ) at room temperature and increases the ionic conductivity significantly. Here, at 25 °C and with a consistent relative density of 94 %–96 %, an ionic conductivity of 2.7×10−5 S cm−1, 6.7×10−5 S cm−1, and 3.6×10−6 S cm−1 was achieved with the compositions Li1.2Sc0.2Zr1.8(PO4)3, Li1.2Y0.2Zr1.8(PO4)3, and Li1.2Al0.2Zr1.8(PO4)3, respectively. In comparison with Li1+xScxZr2−x(PO4)3, the Y3+ substitution in LiZr2(PO4)3 enhanced the ionic conductivity slightly and denoted the maximum Li+ ionic conductivity obtained at room temperature. However, substitution with Al3+ decreased the ionic conductivity. For the first time, this work provides a complete overview of three series of solid Li-ion conductors in the Li2O-M2O3-ZrO2-P2O5 system where M=Al, Sc, Y. Noticeable differences in the chemistry of resulting compounds were observed, which likely depend on the ionic radius of the cations being substituted. The series with Sc showed complete miscibility from x=0 to x=2 with a continuous change of the NaSICON polymorphs. The series with Y showed a solubility limit at about x=0.3 and higher substitution levels led to the increasing formation of YPO4. The series with Al exhibited continuously decreasing ionic conductivity until x=1, whereupon the investigation was terminated due to its very low conductivity of about 10−10 S cm−1.
000912434 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000912434 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912434 7001_ $$0P:(DE-Juel1)177015$$aOdenwald, Philipp$$b1
000912434 7001_ $$00000-0002-8659-7519$$aAktekin, Burak$$b2
000912434 7001_ $$00000-0003-4663-2671$$aSann, Joachim$$b3
000912434 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000912434 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b5$$eCorresponding author
000912434 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b6
000912434 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202200327$$gVol. 5, no. 11$$n11$$pe202200327$$tBatteries & supercaps$$v5$$x2566-6223$$y2022
000912434 8564_ $$uhttps://juser.fz-juelich.de/record/912434/files/Invoice_5711583.pdf
000912434 8564_ $$uhttps://juser.fz-juelich.de/record/912434/files/Batteries%26Supercaps_5_2022_e202200327_Loutati.pdf$$yOpenAccess
000912434 8767_ $$85711583$$92022-11-10$$a1200187969$$d2023-01-17$$eCover$$jZahlung erfolgt
000912434 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000912434 909CO $$ooai:juser.fz-juelich.de:912434$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000912434 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165315$$aForschungszentrum Jülich$$b0$$kFZJ
000912434 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177015$$aForschungszentrum Jülich$$b1$$kFZJ
000912434 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000912434 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b5$$kFZJ
000912434 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b6$$kFZJ
000912434 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000912434 9141_ $$y2022
000912434 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912434 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000912434 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000912434 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912434 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000912434 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000912434 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000912434 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000912434 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000912434 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000912434 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912434 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000912434 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000912434 920__ $$lyes
000912434 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000912434 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000912434 9801_ $$aFullTexts
000912434 980__ $$ajournal
000912434 980__ $$aVDB
000912434 980__ $$aI:(DE-Juel1)IEK-1-20101013
000912434 980__ $$aI:(DE-Juel1)IEK-12-20141217
000912434 980__ $$aUNRESTRICTED
000912434 980__ $$aAPC
000912434 981__ $$aI:(DE-Juel1)IMD-4-20141217
000912434 981__ $$aI:(DE-Juel1)IMD-2-20101013