Hauptseite > Publikationsdatenbank > Survey of Zirconium‐Containing NaSICON‐type Solid‐State Li+ Ion Conductors with the Aim of Increasing Reduction Stability by Partial Cation Substitution > print |
001 | 912434 | ||
005 | 20240712113050.0 | ||
024 | 7 | _ | |a 10.1002/batt.202200327 |2 doi |
024 | 7 | _ | |a 2128/33029 |2 Handle |
024 | 7 | _ | |a WOS:000853914500001 |2 WOS |
037 | _ | _ | |a FZJ-2022-05613 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Loutati, Asmaa |0 P:(DE-Juel1)165315 |b 0 |e Corresponding author |
245 | _ | _ | |a Survey of Zirconium‐Containing NaSICON‐type Solid‐State Li+ Ion Conductors with the Aim of Increasing Reduction Stability by Partial Cation Substitution |
260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673622254_26271 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Grand names: BMBF-03XP0173A Kompetenzcluster Festbatt-OxideBMBF-13XP0434A Kompetenzcluster Festbatt2-Oxide |
520 | _ | _ | |a Various compositions of the series Li1+xM3+xZr2−x(PO4)3 where M3+=Al3+, Sc3+, Y3+ were prepared by solution-assisted solid-state reaction, since they could have a higher reduction stability as solid electrolytes in lithium batteries than in germanium- or titanium-containing materials. The influence of substitution on crystallographic parameters, density, and ionic conductivity were investigated. The cation substitution of M3+ (M=Al, Sc, Y) for Zr4+ in LiZr2(PO4)3 stabilizes the rhombohedral NaSICON structure (space group urn:x-wiley:25666223:media:batt202200327:batt202200327-math-0001 ) at room temperature and increases the ionic conductivity significantly. Here, at 25 °C and with a consistent relative density of 94 %–96 %, an ionic conductivity of 2.7×10−5 S cm−1, 6.7×10−5 S cm−1, and 3.6×10−6 S cm−1 was achieved with the compositions Li1.2Sc0.2Zr1.8(PO4)3, Li1.2Y0.2Zr1.8(PO4)3, and Li1.2Al0.2Zr1.8(PO4)3, respectively. In comparison with Li1+xScxZr2−x(PO4)3, the Y3+ substitution in LiZr2(PO4)3 enhanced the ionic conductivity slightly and denoted the maximum Li+ ionic conductivity obtained at room temperature. However, substitution with Al3+ decreased the ionic conductivity. For the first time, this work provides a complete overview of three series of solid Li-ion conductors in the Li2O-M2O3-ZrO2-P2O5 system where M=Al, Sc, Y. Noticeable differences in the chemistry of resulting compounds were observed, which likely depend on the ionic radius of the cations being substituted. The series with Sc showed complete miscibility from x=0 to x=2 with a continuous change of the NaSICON polymorphs. The series with Y showed a solubility limit at about x=0.3 and higher substitution levels led to the increasing formation of YPO4. The series with Al exhibited continuously decreasing ionic conductivity until x=1, whereupon the investigation was terminated due to its very low conductivity of about 10−10 S cm−1. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Odenwald, Philipp |0 P:(DE-Juel1)177015 |b 1 |
700 | 1 | _ | |a Aktekin, Burak |0 0000-0002-8659-7519 |b 2 |
700 | 1 | _ | |a Sann, Joachim |0 0000-0003-4663-2671 |b 3 |
700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 4 |
700 | 1 | _ | |a Tietz, Frank |0 P:(DE-Juel1)129667 |b 5 |e Corresponding author |
700 | 1 | _ | |a Fattakhova-Rohlfing, Dina |0 P:(DE-Juel1)171780 |b 6 |
773 | _ | _ | |a 10.1002/batt.202200327 |g Vol. 5, no. 11 |0 PERI:(DE-600)2897248-X |n 11 |p e202200327 |t Batteries & supercaps |v 5 |y 2022 |x 2566-6223 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/912434/files/Invoice_5711583.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/912434/files/Batteries%26Supercaps_5_2022_e202200327_Loutati.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:912434 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165315 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)177015 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161591 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129667 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)171780 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-08-32 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-32 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-32 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-23 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|