000912435 001__ 912435
000912435 005__ 20240725202007.0
000912435 0247_ $$2doi$$a10.1016/j.oceram.2022.100313
000912435 0247_ $$2Handle$$a2128/33041
000912435 0247_ $$2WOS$$aWOS:001103438600004
000912435 037__ $$aFZJ-2022-05614
000912435 082__ $$a600
000912435 1001_ $$0P:(DE-Juel1)165315$$aLoutati, Asmaa$$b0$$eCorresponding author
000912435 245__ $$aNaSICON-type solid-state Li+ ion conductors with partial polyanionic substitution of phosphate with silicate
000912435 260__ $$aAmsterdam$$bElsevier$$c2022
000912435 3367_ $$2DRIVER$$aarticle
000912435 3367_ $$2DataCite$$aOutput Types/Journal article
000912435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884722_24837
000912435 3367_ $$2BibTeX$$aARTICLE
000912435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912435 3367_ $$00$$2EndNote$$aJournal Article
000912435 500__ $$aGrant names:BMBF-03XP0173A Kompetenzcluster Festbatt-OxideBMBF-13XP0434A Kompetenzcluster Festbatt2-Oxide
000912435 520__ $$aThe increasing demand for safe energy storage has led to intensive investigations of solid-state Li+-ion conductors in the Li2O-M2O3–ZrO2–SiO2–P2O5 system. As a continuation of the cation substitution in this system, which we reported on very recently, a study of the impact of polyanionic substitutions on ionic conductivity was carried out here in two series, Li3+xSc2SixP3-xO12 (0 ≤ x ≤ 0.6) and Li1.2+xSc0.2Zr1.8SixP3-xO12 (0.3 ≤ x ≤ 2.8), with the aim of increasing ionic conductivity, determing the phase stability, and optimizing the processing conditions – especially decreasing the sintering temperatures – depending on the level of substitution.The polyanionic substitution, i.e. the substitution of (PO4)3- with (SiO4)4-, in the Li2O–Sc2O3–ZrO2–SiO2–P2O5 system revealed that a) the sintering temperature can effectively be reduced, b) the presence of zirconium can limit the evaporation of lithium species even at high sintering temperatures, c) the purity of the NaSICON materials has a strong influence on the grain boundary resistance, and therefore on the ionic conductivity, and d) the silicate substitution in Li3+xSc2SixP3-xO12 (0 ≤ x ≤ 0.6) stabilized the monoclinic polymorph (space group P21/n) with an enhanced total ionic conductivity at 25 °C from 6.5 × 10−7 S cm−1 to 1.2 × 10−5 S cm−1 for x = 0 to x = 0.15, respectively, exhibiting the highest ionic conductivity at 25 °C among the compositions investigated.
000912435 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000912435 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912435 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b1$$ufzj
000912435 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b2$$ufzj
000912435 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b3$$ufzj
000912435 773__ $$0PERI:(DE-600)3023650-2$$a10.1016/j.oceram.2022.100313$$gVol. 12, p. 100313 -$$p100313$$tOpen ceramics$$v12$$x2666-5395$$y2022
000912435 8564_ $$uhttps://juser.fz-juelich.de/record/912435/files/Open%20Ceramics_12_2022_100313_Loutati.pdf$$yOpenAccess
000912435 8767_ $$d2022-02-21$$eAPC$$jZahlung erfolgt$$zOABLE
000912435 909CO $$ooai:juser.fz-juelich.de:912435$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000912435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165315$$aForschungszentrum Jülich$$b0$$kFZJ
000912435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b1$$kFZJ
000912435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b2$$kFZJ
000912435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b3$$kFZJ
000912435 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000912435 9141_ $$y2022
000912435 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000912435 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912435 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000912435 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000912435 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912435 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000912435 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:09:46Z
000912435 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:09:46Z
000912435 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:09:46Z
000912435 920__ $$lyes
000912435 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000912435 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000912435 980__ $$ajournal
000912435 980__ $$aVDB
000912435 980__ $$aI:(DE-Juel1)IEK-1-20101013
000912435 980__ $$aI:(DE-Juel1)IEK-12-20141217
000912435 980__ $$aAPC
000912435 980__ $$aUNRESTRICTED
000912435 9801_ $$aAPC
000912435 9801_ $$aFullTexts
000912435 981__ $$aI:(DE-Juel1)IMD-4-20141217
000912435 981__ $$aI:(DE-Juel1)IMD-2-20101013