
PHYSICAL REVIEW A 106, 032431 (2022)

Rescaling decoder for two-dimensional topological quantum color codes on 4.8.8 lattices

Pedro Parrado-Rodríguez ,1 Manuel Rispler,2,3 and Markus Müller 2,3

1Department of Physics, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
2Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen, Germany

3Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, D-52425 Jülich, Germany

(Received 22 December 2021; revised 3 August 2022; accepted 10 August 2022; published 26 September 2022)

Fault-tolerant quantum computation relies on scaling up quantum error correcting codes in order to suppress
the error rate on the encoded quantum states. Topological codes, such as the surface code or color codes, are
leading candidates for practical scalable quantum error correction and require efficient and scalable decoders. In
this work, we propose and study the efficiency of a decoder for two-dimensional topological color codes on the
4.8.8 lattice (also known as the square-octagon code), by building on the work of Sarvepalli and Raussendorf
[Phys. Rev. A 85, 022317 (2012)], for color codes on hexagonal lattices. The decoder is based on a rescaling
approach, in which syndrome information on a part of the qubit lattice is processed locally, and then the lattice
is rescaled iteratively to smaller sizes. We find a threshold of 6.0% for code capacity noise.

DOI: 10.1103/PhysRevA.106.032431

I. INTRODUCTION

Quantum error correction (QEC) schemes aim at detect-
ing and correcting errors during storage and processing of
quantum information to enable long and reliable quantum
computation on scalable quantum processors [1,2]. QEC
codes encode logical information in nonlocal degrees of free-
dom such that the effects of errors can be detected through
parity check measurements and reversed before they accu-
mulate. The threshold theorem ensures that the logical error
rate can be arbitrarily suppressed by increasing the size of the
code, provided that fault-tolerant quantum circuit construc-
tions are used and the physical error rates fall below a given
critical threshold [3–5]. The value of the threshold depends on
the QEC code, the noise model, and in particular also on the
decoder. The latter amounts to our ability to correctly inter-
pret the syndrome, which is given by the collection of error
information gathered through measuring the parity checks, in
order to apply a correction with a high success probability.
Topological QEC codes such as the toric or surface code
[6–8] and color codes [9,10] encode the logical information
into topological properties of the system, while all parity
checks are low-weight measurements involving geometrically
local qubits on the lattice. They stand out as the QEC codes
with some of the highest known thresholds [2,11] when,
e.g., compared to concatenated codes, which makes them
attractive candidates for experimental realizations [12–19]. In
particular, the seven-qubit color code as the smallest fully
functional representative of the family of two-dimensional
(2D) color codes has been targeted in a series of experimen-
tal QEC advances in ion trap quantum devices: From code
state preparation implemented in [12], fault-tolerant stabilizer
measurement [20], and repeated QEC cycles [13] as well as
fault-tolerant magic-state preparation and injection [16] have
been demonstrated recently. Complementary, small surface

codes are prominently being pursued in superconducting qubit
experiments: There, single weight-four parity measurement
[19] and error detecting surface codes [15,18], code-state
preparations of larger surface code states [14], and the very
recent leap towards repetitive QEC cycles in a Surface-17
architecture [21] have been shown.

To execute operations on the encoded logical qubits, one
has to devise logical gates, which is the subject matter of
the theory of fault tolerance [4,5]. Here, the challenge is to
make sure that the synthesized gates act in such a way that
they cannot inadvertently spread errors beyond the scope of
what the QEC code is able to correct. This spreading is most
easily avoided by acting on the data qubits within the code
block separately, i.e., using no entangling operations at all,
which is known as a transversal implementation of a logical
gate. However, the possibility of implementing logical gates
transversally is limited: On the lower end it depends on the
QEC code and on the upper end it is known to be impossible to
implement a universal gate set fault tolerantly by a no-go the-
orem by Eastin and Knill [22]. In this regard, the color code on
the 4.8.8 lattice is particularly interesting because it allows for
the transversal implementation of the entire Clifford group,
which distinguishes it from surface codes or color codes on
hexagonal lattices. It is therefore optimal in the sense that
adding any other (non-Clifford) gate would render the gate set
universal and hence violate the no-go theorem. The remaining
non-Clifford gate is typically synthesized by other means such
as magic-state distillation and injection [23–26], for which
color codes are also particularly relevant [9,27], as underlined
by recent fault-tolerant implementations of Clifford gates [13]
and a non-Clifford T gate [16].

To operate the color code, in particular codes of larger dis-
tance, it is vital to have an efficient decoding algorithm. This
decoder should on the one hand perform as well as possible in
terms of proposing a (near-)optimal recovery operation. This

2469-9926/2022/106(3)/032431(14) 032431-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6201-2723
https://orcid.org/0000-0002-2813-3097
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.032431&domain=pdf&date_stamp=2022-09-26
https://doi.org/10.1103/PhysRevA.85.022317
https://doi.org/10.1103/PhysRevA.106.032431

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

performance is reflected in the threshold value, and it can at
least for simple noise models be benchmarked against known
upper bounds on decoding performance obtained through
mapping the quantum error correction problem onto a classi-
cal statistical-mechanical model [8,28,29]. On the other hand,
this accuracy of decoding has to be balanced with the time
it takes to run the decoding algorithm: While for a quantum
memory, it is potentially fine to keep a backlog of measured
error syndromes and figure out the correction in classical post-
processing later, this is not the case anymore once we start to
perform logical quantum computations: Here the intermediate
state of the computation will depend on the decoder outcome,
such that the quantum computation may have to wait for the
decoding algorithm to finish, time during which of course
new errors accumulate. The development of decoders for color
codes has been and still is an active field of research [30–41].
For the case of data qubit noise, also known as code capacity
noise, the decoder upper bound threshold is known to be
10.9% [28], which interestingly seems to be independent of
the color code lattice. The decoder with the best performance
known in terms of threshold is the restriction decoder, which
achieves 10.2%, when using minimum weight perfect match-
ing (MWPM) as a subroutine [38]. The runtime complexity of
MWPM as a function of the number of qubits N is O(N4) for a
straightforward implementation of the original Blossom algo-
rithm [42,43], which can be optimized to O(N2.5) using recent
advancements [44,45]. Instead of MWPM, one could also use
the union-find decoder [35], which has a runtime complexity
of O(Nα(N)), where α(x) is the inverse Ackermann function
and extremely slowly growing, which equips this decoder
with almost linear time complexity. Alternative approaches
have explored as well the use of machine learning to solve
the decoding problem [33,39–41]. In this work, we explore
a different decoding paradigm based on iterative rescaling
and partial decoding known as renormalization-group (RG)
decoding. This paradigm was introduced in [46] for surface
codes and extended to the color code on a hexagonal (6.6.6)
lattice in [30]. Owing to the rescaling feature, these algorithms
have a runtime complexity of O(N log(N)), as the rescaling of
the lattice can be done in linear time O(N) since it is based on
local operations, and the number of iterations of the rescaling
process grows as O(log(N)). The local nature of the rescaling
algorithm means it can be parallelized, achieving an overall
scaling of O(log(N)), which holds the potential for drastic
improvements in decoding runtime.

The paper is organized as follows. First, in Sec. II we
introduce central concepts about 2D color codes and the de-
coder proposed in [30], as well as some of the key ideas and
concepts used in the algorithm. Then, in Sec. III we explain
the details about the decoder and the different steps: Belief
propagation, splitting of the stabilizers, and rescaling of the
cells. In Sec. IV, we estimate the threshold for code capacity
noise, obtained from Monte Carlo simulations for several lat-
tice sizes. In Sec. V, we conclude and present some directions
for future extensions of the decoder.

II. BACKGROUND

Color codes are stabilizer codes [9,10,47] defined on face-
three-colorable trivalent graphs, i.e., graphs where all vertices

FIG. 1. Representation of the color code 4.8.8 lattice. On the
primal lattice (left), qubits are represented by black vertices, and the
stabilizers SZ and SX are represented by the colored plaquettes, which
apply a parity check over the qubits on the vertices. In the reciprocal
lattice (right), the qubits are represented by triangles, and stabilizers
are represented by colored vertices, which apply a parity check over
the qubits for which the stabilizer is a vertex. The logical operators
are strings of Pauli operators that extend over the torus in a nontrivial
way. On the color code lattice on a torus, we have two independent
logical operators for each nontrivial loop, i.e., four logical qubits.
The support of the logical operators X̂i and Ẑi is represented by the
blue and green lines, which represent the four nontrivial loops on
the toric color code lattice. To illustrate the effect of errors in the
lattice, we display an example of four physical bit-flip errors (qubits
are marked with red diamonds), and the corresponding stabilizer
excitations (stabilizers are marked with red circles).

have degree three and faces can be colored with three colors
such that neighboring faces never have the same color (see,
e.g., Fig. 1 for the case of the 4.8.8 lattice coloring). Qubits are
identified with the vertices and each face i of the graph defines
two stabilizer generators S(i)

X and S(i)
Z involving all vertices in

the boundary of the respective face [9,47]. These stabilizers
involve purely X or Z Pauli operators, which render color
codes part of the Calderbank-Shor-Steane (CSS) code family
[48,49]. Note that stabilizers are guaranteed to commute since
both faces as well as the boundary of faces on a trivalent three-
colorable graph always contain an even number of vertices.
The code space is defined as the simultaneous +1 eigenspace
of all stabilizers. If we consider periodic boundary conditions,
two independent qubits can be encoded in each of the two
nontrivial loops of the resulting torus (see Fig. 1), leading to
a total of four logical qubits. Being part of the CSS stabilizer
codes, it is possible to detect and correct phase-flip and bit-flip
errors separately by using the syndrome from the X and Z
stabilizers, respectively. Throughout this work we focus on
independent bit- and phase-flip noise. One of the symmetries
of the color code is that it is self-dual under exchanging X
and Z stabilizers, which in particular implies that, in order to
obtain the code capacity threshold, we can focus purely on
bit-flip errors.

032431-2

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

FIG. 2. Example of the splitting of a stabilizer. (a) The original
stabilizer S, represented by the blue vertex, realizes a parity check on
the qubits 1 to 8, both in the Z and the X basis. Qubits are represented
by black dots inside the triangles. (b) We can split the stabilizer
into the half-stabilizers S1 and S2. Each half-stabilizer represents
the parity of its set of qubits S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8}. The
binary sum ⊕ of the parities of both half-stabilizers thus fulfills the
condition s = s1 ⊕ s2. We call the choice of parity assignments of
half-stabilizers for a given stabilizer a splitting. For notation, we use
uppercase letters to refer to the stabilizer operators, and lowercase
for their parity value, which is represented as a 0 for even parity and
1 for odd parity.

III. DECODER ALGORITHM

A. Introduction to the decoder’s approach

In this section, we introduce a qualitative description of
the decoder algorithm. With this outline, we aim to frame
the general picture of the decoder and the basic underlying
principle. In the following subsequent sections, we study the
details of each particular step.

The main idea behind the decoder is to split the code
lattice into small cells. These cells can be decoded locally
and the result can then be merged into the global decoding
decision. A key problem to this decoding ansatz is that when
trying to divide the lattice into cells, one invariably has to
cut through some stabilizers that are shared between different
cells. The solution to that problem is to split these stabilizers
into two, which we will hence refer to as half-stabilizers in
the following, so that one can decode each cell individually by
using the local syndrome from the half-stabilizer that applies
to the cell (Fig. 2). Thus, the way in which each stabilizer is
split between the cells determines the correction applied on
the cells. After applying a local decoding on each cell, this
cell can be treated as an individual effective qubit (two when
using a square cell) of a now rescaled color code, where we
have rescaled the lattice to a smaller version of itself. This

FIG. 3. Sketch of a rescaling step in the 4.8.8 color code lattice.
Qubits are represented by triangular faces, and the colored vertices
represent the stabilizers. The initial lattice (a) can be split into multi-
ple cells (b), which can be decoded locally. Each triangular cell can
then be mapped into a single effective qubit in a rescaled lattice (c).
This process of rescaling can be repeated until the final lattice is small
enough to apply a brute-force decoding. Corrections on the smaller
lattices can then be backpropagated to the original lattice, finding the
final correction. (d) In this work we consider a 4.8.8 color code lat-
tice, where each qubit is involved in one 4-qubit stabilizer associated
to a square plaquette and in two 8-qubit stabilizers on octagonal pla-
quettes, with periodic boundary conditions. The lattices considered
host codes with parameters [[n, k, d]] = [[8 · 9m, 4, 2 · 3m]], where
n is the number of qubits in the lattice, k the number of logical
qubits, d is the distance of the code, and the integer m denotes the
number of rescaling steps. The blue arrows represent the initial order
of operations, in which the lattice is rescaled until the smallest system
size is reached. Green arrows represent the backpropagation process,
from the smallest rescaled lattice back to the original code.

process can then be repeated, ultimately leading to a lattice
small enough so that a brute force decoding can be applied.
This rescaling process is illustrated in Figs. 3(a)–3(c) for the
2D color code on the square-octagon lattice.

During the algorithm, each qubit is assigned an error
probability. This value can be initialized according to the
error model, i.e., in our case every qubit a priori has er-
ror probability p. This value is then updated using a belief
propagation algorithm [50,51] to propagate information about
the observed syndrome to the qubits. Using these error rates,
the next step of the algorithm is to split the stabilizers that
are shared between two cells into half-stabilizers. In order to
be consistent with the observed syndrome, e.g., a stabilizer
operator S with parity s = 1 (odd) can be split in two different
ways: (sA, sB) = (1, 0) or (sA, sB) = (0, 1), so that the total
parity of the sum of the half-stabilizers corresponds to the
original value of the stabilizer s = sA ⊕ sB. The choice of the
splitting configuration determines the syndrome assigned to
each individual cell. This syndrome is used by the decoder for
a local cell to find a suitable correction within the cell. To find
the best choice of splitting for the stabilizers (i.e., the one that

032431-3

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

Algorithm 1. Rescaling decoder

Data: Measured syndrome
Result: Recovery operation
while Lattice larger than minimum size do

Estimate the error probability of each qubit (1.)
Split the code into cells (2.)
Split the stabilizer values between the cells (3.)
Apply a local decoder on each cell (4.)
Rescale the cells to effective qubits (5.)

end
Apply a brute force decoder on the final lattice (6.)
Back-propagate the errors to the original lattice (7.)

leads to the recovery operation for the most probable error),
we apply a series of splitting updates, which assign a like-
lihood to each choice depending on the local information of
the neighboring cells. We use a suitable convergence criterion,
after which we then fix the configuration of splitting choices
for the stabilizers, such that each cell can now be decoded
using only the information from the local syndrome. Using the
probabilities of the different error configurations compatible
with that local syndrome, we can then rescale the cells to
effective qubits and assign a new error probability to them.
With this last step, we complete the rescaling cycle, which
thereby leads to a smaller version of the lattice.

The challenge of defining a rescaling algorithm on the 4.8.8
lattice lies in identifying a valid choice for the form and size
of the minimal cell. Due to the conditions that a cell must
fulfill to be rescalable to an effective qubit, the minimal cell
on the 4.8.8 lattice is more than twice times bigger and shares
two stabilizers with each neighboring cell when compared
to the simpler case of the 6.6.6 lattice, where neighboring
cells share only a single stabilizer. This change requires the
splitting algorithm that splits the stabilizers between cells to
update splittings pairwise instead of individually.

B. Decoder algorithm for the 4.8.8 lattice

In the following we present the decoding algorithm in the
form of high-level pseudocode and discuss the main steps
the decoder, which uses the measured syndrome and a prior
estimate of the qubit error rate as input:

(1) We estimate the error probability of the qubits using the
information from the syndrome (Fig. 4). This is done in two
steps. First, we apply a belief propagation algorithm, through
which stabilizers and qubits share information via message
passing (see Sec. III D). Second, we update the probabilities
of the qubits around the corners of the cells depending on the
parity of the stabilizer in the corner [30].

(2) We subdivide the code into multiple cells. The stabi-
lizers S between two adjacent cells are split, while preserving
the parity of the sum: sa ⊕ sb = s. This allows for two ways
of splitting a stabilizer (Fig. 5).

(3) We find a configuration for the stabilizer splittings
(Fig. 2) and assign a probability for each splitting choice
(details will be provided in Sec. III F): (3a) We compute
the initial splitting probabilities using the probabilities of the
qubits involved. (3b) We update the probabilities of the dif-
ferent splitting choices (Fig. 6) using local information, as

FIG. 4. Example of updated qubit error probabilities after belief
propagation. We show a 72-qubit color code with periodic boundary
conditions, where qubits are represented by the colored triangles, and
stabilizers are represented by the colored circles in red, blue, and
green. The nontrivial stabilizers are represented with a yellow border,
and the physical errors are represented by red diamonds. During
belief propagation, stabilizers and qubits share information locally,
which leads to a refined estimate of the qubit error probabilities.
In this example, the qubit error probabilities are represented by the
coloring of the triangles, which correspond to the qubits, ranging
from white to red as indicated in the color bar. The thicker black
solid line has been drawn as a guide to the eye when comparing the
figure with Fig. 5, after dividing the lattice into square cells.

described in Sec. III F. The update is applied simultaneously
on all splittings of the lattice. Several global update steps are
used until convergence is reached for the split choice.

(4) After fixing the half-stabilizers, each cell has a local
syndrome. Using a lookup table (a precomputed list contain-
ing all possible errors compatible with the syndrome), we
can decode the cells and find a correction (Fig. 7). At this
step, we ignore the syndrome of the corners, as their parity
will become the syndrome of the rescaled lattice. The parity
of those stabilizers will thus be addressed in the decoding
process applied to the subsequent rescaled lattices.

(5) The cells can now be rescaled to effective qubits
(Fig. 8). We can compute the error probability of the rescaled
qubits as the probability of applying a logical operator in the
cell (see Sec. III G).

(6) We create a new code by rescaling each cell on the
lattice to effective qubits. If the code is small enough, we can
decode the lattice by finding the most probable error with a
lookup table. Otherwise, we repeat steps 1–5 for the new code.

(7) Once we have the corrections on the smallest lattices,
we can backpropagate the corrections to the original lattice to
obtain the final recovery operation.

032431-4

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

FIG. 5. Splitting of the lattice into cells. We show the same code
as in Fig. 4 after splitting the lattice into four different cells. The
stabilizers at the boundary between cells need to be split into half-
stabilizers, as in Fig. 2. The parity of each half-stabilizer sa and sb

is represented as a 0 for even parity and a 1 for odd parity, and the
binary sum ⊕ of the parity of both half-stabilizers needs to equal
the parity s of the original stabilizer S. For each stabilizer, there are
two alternative splittings into half-stabilizers. The black solid line
in the cells has been drawn to distinguish the two effective qubits
that result from the rescaling of the cells. The physical errors in this
particular example have been marked with red diamonds, and the
excited stabilizers are marked with a yellow border.

After applying the recovery operation, we can check in our
simulations if the combination of the error and our correction
corresponds to the application of a logical operator, and thus
the occurrence of a logical error, on any of the four encoded
qubits in the lattice. This can be easily done by checking the
parity of the qubits along each of the four operators drawn in
Fig. 1, i.e., for instance the parity of the number of bit flips
along the qubits in the support of Ẑi determines if a logical X̂i

operator was applied.
It is important to notice that the smallest lattice size and the

size of the unit cell determine the code size (total number of
qubits) for which the decoder can be applied. In this work, we
consider the minimum lattice size of 8 qubits. Thus, the lattice
sizes for which the decoder can be applied depend on the num-
ber of rescaling steps m as [[n, k, d]] = [[8 × 9m, 4, 2 × 3m]],
where n is the number of qubits in the lattice, k the number of
logical qubits, and d is the distance of the code. The number
of qubits in the lattice begins with 8 qubits as the minimum
lattice size (see Fig. 3), and each rescaling step introduces
a factor of 9 in the number of qubits (see Fig. 8). Similarly,
the code distance d of the smallest lattice size is 2, and each

FIG. 6. Sketch of the splitting of two stabilizers. A cell shares
two stabilizers with each of the neighboring cells. There are four
different ways to split a pair of stabilizers in half-stabilizers. During
the splitting updates, we compute an estimate of the probability of
each of the four splitting choices. The signs shown in the dark circles
correspond to the parity of the half-stabilizers. The two cells shown
in the figure are part of the lattice shown in Fig. 4.

rescaling step increases the logical distance by a factor of 3
(see logical operators in Fig. 1).

C. Minimal cell

In order to choose an appropriate cell, these are the condi-
tions that need to be fulfilled (cf. [30]):

(1) A logical operator can be defined for the cell.
(2) There exists a valid correction for every possible syn-

drome.

FIG. 7. Local decoding of cells. A single cell can be decoded
using the syndrome from the half-stabilizers in the boundary and the
parity of the bulk stabilizers. To find the correction, a brute-force
decoder is applied, which finds the most probable correction (the
qubits in this suggested correction are marked by blue diamonds)
using the estimates of the error probabilities of each qubit. The parity
of the corner stabilizers is ignored during the decoding of the cell, but
the parity of these stabilizers is updated depending on the corrections
applied. In this particular example, the parity of the stabilizer in
the upper left corner would be changed by the proposed correction,
which will be taken into account in the rescaled lattice. The signs in
the dark circles represent the parity of the half-stabilizers in this cell.

032431-5

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

FIG. 8. Rescaling cells in the 4.8.8 lattice. (a) Minimal cell for
the rescaling decoder in the 4.8.8 lattice. This 9-qubit cell can be
mapped to a single effective qubit (b) during the rescaling of the
lattice. (c) A square cell can be used during the decoder process
to reduce the number of stabilizer splittings. This cell is mapped to
two effective qubits, as shown in (d). An error on the rescaled qubit
can be backpropagated (curved double arrow) to the original lattice
by applying the effective logical operator of the cell: The qubits
marked in (c) with white squares represent the logical operator of the
effective qubit marked in (d). By applying this logical operator, the
parity of the corner stabilizers corresponding to the effective qubits
is changed, while preserving the parity of the rest of the stabilizers
in the cell. (e) For comparison, we show the minimal cell for the
rescaling decoder in the hexagonal lattice [30], with only four qubits.
This cell can be rescaled to an effective qubit (f).

(3) The cell can map the entire code to a smaller version
of itself.

A valid cell for which these conditions are fulfilled can be
found by choosing a triangular cell for which the three corners
are of different color.

The minimal cell that fulfills these conditions in the 4.8.8
lattice is the 9-qubit cell represented in Fig. 8. The cell shares
two split stabilizers with each neighboring cell, and an ad-
ditional stabilizer is contained entirely within the cell. The
syndrome for this cell contains seven stabilizer measurements
(one red stabilizer inside the cell, and six half-stabilizers on
the boundaries), and four different corrections are possible for
each possible syndrome due to the logical operator and the
stabilizer contained within the cell.

Using this cell, it is possible to map a 4.8.8 lattice to a
smaller version of itself, reducing the number of qubits by a
factor of 9 with each step. In Fig. 3, a single step of splitting
the lattice and rescaling the cells is shown. In practice, it can
be convenient to combine two triangular cells into a square
cell consisting of two effective qubits (as shown in Fig. 7).

By using square cells, we reduce the number of stabilizer
splittings needed in each decoding step. This approach also
proved to achieve better correction capabilities in the hexago-
nal lattice [30]. In this work, we study the performance of the
decoder using these square cells.

D. Belief propagation

In general, belief propagation (BP) is a method to com-
pute or approximate marginal probabilities of multivariate
probability distributions [52]. BP is formulated in a graph-
theoretical setting, where the multivariate distribution is
represented as a factor graph, which is a bipartite graph with
vertices representing (a) the variables and (b) the factors such
that edges between the two indicate a functional dependence
of the latter on the former. In an error correction setting, the
role of variables is taken by the qubits and the role of factors
by the parity checks, i.e., the stabilizer generators and the
multivariate probability distribution is the error model (e.g.,
independent bit-flip noise, depolarizing noise, etc.). The task
of marginalization, i.e., of summing over all variables except
the one we are interested in, is in general exponentially hard
since there are exponentially many configurations to sum over.
However, the ingenuity of BP (or more precisely the sum-
product message passing algorithm [50]) lies in streamlining
the summations into subtasks, called messages, which are
computed locally and then passed forward on the edges of
the factor graph. If the structure of the factor graph is treelike
(i.e., contains no loops), this renders the BP algorithm exact,
i.e., it computes the exact marginals on all variables in a
number of steps proportional to the depth of the tree. While
most graphs are not treelike, it turns out that in practice BP
can still yield good approximations to the marginals as long
as the underlying graph does not contain too many loops;
as a decoder for classical so-called low-density parity check
(LDPC) codes it performs close to optimal [53].

In general, as a standalone decoder, BP is known to fail
when trying to decode topological QEC codes, which is at-
tributed to the highly degenerate nature of topological codes
[54]: Degeneracy refers to the fact that one syndrome can be
corrected in many distinct ways that are nevertheless logically
equivalent. Here, this problem does not arise since we abort
BP iterations before running into loops. For the decoder in-
vestigated here, BP serves as a means to compute estimates of
the qubit error probabilities from the stabilizer measurement
outcomes, which then acts as input to the remaining process-
ing steps.

The main idea behind the algorithm is the following:
(i) At the beginning, each qubit has an estimate of its error

probability. Each syndrome has a parity value.
(ii) Each qubit sends a message to the neighboring stabi-

lizers with information about its error probability.
(iii) With the information from the error probabilities of

the qubits involved in a parity measurement, each stabilizer
can send an updated estimate of the error probability for each
qubit. For example, if the parity is even, this means that an
error in a qubit implies an odd parity in the rest of the qubits
involved in the stabilizer. Therefore, the stabilizer sends a
message to each qubit with information on the probability
of the rest of the qubits having an odd number of errors.

032431-6

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

Similarly, if the parity is odd, the message will contain in-
formation about the probability of an even number of events
in the remaining qubits.

(iv) With the updated information from the stabilizers, the
qubits send an updated message to the neighboring stabilizers,
repeating the process. With each cycle of message passing, the
information spreads through the code.

(v) After a given number of iterations, the algorithm stops
and utilizes the information from the messages to update the
estimate of the error probability of the qubits (see Fig. 4).

Now, let us get into the details of the mathematics behind
the algorithm. The building block of belief propagation is
Bayes theorem, applied to update the probability of an error
in a qubit with the information from the syndrome:

p(qi = 1|{s}) = p(qi = 1)

p({s})
p({s}|qi = 1), (1)

p(qi = 0|{s}) = p(qi = 0)

p({s})
p({s}|qi = 0), (2)

where p(qi = 1|{s}) is the probability of an error on qubit qi

given the syndrome {s}, p(qi = 1) is the prior, or the previous
information on the qubit error rate, p({s}|qi) is the probability
of the given syndrome assuming an error on qubit qi (usually
called the likelihood ratio), and p({s}) is the probability of the
syndrome event. This last term is effectively an unknown nor-
malization factor, that would be hard to compute. However,
we can cancel that term if we compute instead the quotient of
both quantities. Thus, we can write

p(qi = 0|{s})

p(qi = 1|{s})
= p(qi = 0)

p(qi = 1)

p({s}|qi = 0)

p({s}|qi = 1)
(3)

=1 − pi

pi

∏
j

p(s j |qi = 0)

p(s j |qi = 1)
,

where the product in j compiles information for all the parity
s j of the stabilizers affecting the qubit. This quotient will
correspond to the information sent from each stabilizer j to
the qubit, and can be written, depending on the parity of the
stabilizer, as

Ms=0→q = p(s = 0|qi = 0)

p(s = 0|qi = 1)
= p(even)

p(odd)
, (4)

Ms=1→q = p(s = 1|qi = 0)

p(s = 1|qi = 1)
= p(odd)

p(even)
. (5)

Here, p(even) and p(odd) correspond to the probability of
an even or odd number of error events happening on the
remaining qubits involved in the parity check. Therefore, we
can compute the messages from the stabilizers by computing
the probability of an even or odd number of error events
happening on the remaining qubits. This probability can be
written using a simple formula to find the probability of an
even or odd number of error events, given the probabilities pi

of each individual event:

p(even|{pi}) = 1

2
+ 1

2

∏
i

(1 − 2pi), (6)

p(odd|{pi}) = 1

2
− 1

2

∏
i

(1 − 2pi). (7)

Then, the messages from the qubits to the stabilizers are
updated using the information from the stabilizers. The mes-
sages to the stabilizers in the next cycle are

Mq→si = 1 − p

p

∏
j∈N (q)

j �=i

Msj→q, (8)

where N (q) refers to the three stabilizers in the neighborhood
of qubit q. In this way, the information from the qubits and
stabilizer spreads through the code, leading to an improved
estimation of the error probabilities for the qubits. However,
in the numerical simulations, the direct use of Eqs. (4), (5),
and (8) leads to numerical problems, when the error probabil-
ities of the qubits assume values close to zero. To solve this
problem, it is useful to work with the logarithm-likelihood
ratio. The equations for the messages can then be simplified,
as shown in the Appendix of [55]. With that formulation, the
initial message from qubits to stabilizers is

M (0)
q→s = ln

1 − pq

pq
. (9)

The equation for the messages from stabilizers to qubits can
be written as

Msi→q j = (1 − 2si) 2 tanh−1

⎡
⎢⎢⎣ ∏

k∈N (si)
k �= j

tanh(Mqk→si/2)

⎤
⎥⎥⎦,

(10)
where si represents the parity of the stabilizer measurement.
Similarly, the equation for messages from qubits to stabilizers
is simplified as

Mqi→s j =
∑

sk∈N (qi)
k �= j

Msk→qi + ln 1−pi

pi
. (11)

After the last iteration of message passing, we can obtain
the updated estimate of the error probability. The equation for
the final estimate of the error probability can be written as

pupdated
i =

[
1 + exp

(
ln 1−pi

pi
+

∑
j

Msj→qi

)]−1

. (12)

E. Corner updates

During the decoding process, the splitting updates and the
cell decoder ignore the syndrome of the stabilizers located in
the corners of the cells. This can be problematic for some
error cases, as the decoder would not be able to distinguish
cases that differ only on the syndrome of the corner stabiliz-
ers. For this reason, it is useful to use the information from
the syndrome in the corners of the cells to modify the error
probability of the qubits near the corners.

Given the parity si of a given corner stabilizer, we need the
parity of the qubits in the cell plus the parity of the qubits
outside to be equal to si. Thus, for a given qubit j in the cell
with a prior estimate p j , we can compute the updated error
probability of an error on qubit j given the parity of the corner

032431-7

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

stabilizer p(j|si, pe) as

p(j|si = 0) = p j pe(odd)
p j pe(odd)+(1−p j)pe(even) , (13)

p(j|si = 1) = p j pe(even)
p j pe(even)+(1−p j)pe(odd) , (14)

where pe corresponds to the probability of the qubits outside
the cell to have a total parity that is even or odd. We can use
Eqs. (6) and (7) to compute the probability of n qubits having
a total even or odd parity.

F. Splitting of the stabilizers

The basic cells on the 4.8.8 lattice share two splittings
with each neighboring cell. This leads to a new phenomenon
compared to the simpler case of the 6.6.6 lattice, as the
probability of splitting of each stabilizer now depends on the
splitting configuration of the other splitting shared with that
cell. Therefore, we need to consider the joint probabilities,
which take into account simultaneously the probability of a
splitting configuration of the two stabilizers s1 and s2 shared
between the cells.

This complication in the way we store and compute the
probabilities of splitting configurations will affect most of the
other steps of the algorithm, as splittings need to be considered
in pairs, taking into account the joint probabilities:

(1) The first estimate for the joint probabilities is obtained
from the probabilities of the qubits involved in each stabilizer
having an even or odd number of errors. This does not take
into account the rest of the splittings in the cell, only the
probabilities of the qubits involved in the splitting.

(2) During the splitting updates, we will update the joint
probabilities for the splitting configurations. Each step will
update our estimate for the probabilities of each splitting using
the information from the two cells involved.

(3) In the rescaling step, the probability of error in the
rescaled qubit involves the probabilities of the different split-
ting configurations. This means that the error probability of
the rescaled qubit will take into account the uncertainty in the
splitting choice.

Now, let us get into the details of the equations needed to
compute the updated probabilities for the splittings. The first
equation we need to consider corresponds to the probability of
a given error configuration. Assuming our estimate of the error
probabilities of each individual qubit, we can compute the
probability of an error configuration C = {e0, e1, . . . enq−1}
(where ei = 0, 1 represents no error or an error on qubit i,
and nq is the number of qubits in a cell) by adding a factor of
pi for each qubit with an error, and a factor of 1 − pi for each
qubit without an error,

p(C) =
nq−1∏
i=0

pei
i (1 − pi)

1−ei , (15)

where we assumed no correlation between the error probabil-
ity pi of each qubit. During the rescaling process, the use of
square cells with two qubits will give us access to the joint
probabilities of each qubit pair that belongs to the same cell.
We can use this additional information about the correlations

between different qubits to modify this equation as

p(C) =
nq/2−1∏

i=0

p(ei, ei+1), (16)

where p(ei, ei+1) corresponds to the element of the joint prob-
abilities corresponding to our prior knowledge from the error
probabilities of qubits i and i + 1.

Using the probability of a given error configuration, we
can compute the probability of all error configurations that
are compatible with a given syndrome as the sum of p(C)
over all configurations C compatible with the syndrome {s} =
{s0, s1 . . . snS−1} (si = 0, 1 represents the even or odd parity of
the stabilizer or half-stabilizer i):

p(e|{s}) =
∑

C

p(C). (17)

For the 18-qubit square cell that we use for the 4.8.8 color
code, each syndrome includes eight half-stabilizers (two on
each side of the square) and four additional stabilizer mea-
surements corresponding to the bulk stabilizers inside the cell.
Here, as stated earlier, the parity of the corners is ignored, as
the parity of the corner stabilizers will be solved in the follow-
ing rescaling steps. For the square cell, there are two logical
operators that can be defined, one for each of the logical qubits
to which the cell will be rescaled. This means that there will
be 22 possible classes of configurations compatible with any
syndrome in the cell. In addition to that, all possible product
combinations with the four bulk stabilizers lead to equivalent
error configurations. This leads to a total of 22+4 = 64 possi-
ble configurations over which is to be summed according to
Eq. (17).

While using all 64 configurations would lead to more ac-
curate estimations, this also involves a high constant-factor
overhead in the computational time required by the decoder.
Thus, to improve the performance of the algorithm with regard
to computing time, we approximate Eq. (17) by considering
only one configuration, using the cell’s lookup table to find
the most likely configuration. The lookup table for the cell
contains information about all the possible error configura-
tions compatible with each possible syndrome, ignoring the
value of the corner stabilizers. We can use this table to find
the error configuration of minimum weight in O(1). For the
square cell (see Fig. 7), the table contains 28+4 entries, corre-
sponding to the possible syndromes obtained from the eight
half-stabilizers in the boundary and the four stabilizers in the
bulk of the cell. We can construct the lookup table by sorting
the 218 possible error configurations according to the corre-
sponding syndrome and the weight of the error configuration.
This computation only needs to be done once, prior to the
decoding. With this approximation, we effectively reduce the
computational overhead by a factor of 64, while keeping one
of the terms of highest weight in Eq. (17). In our simulations,
we found no significant change in the correction capabilities
of the decoder for system sizes larger than 72 qubits. There-
fore, we used this approximation for the simulations shown in
Sec. IV.

Once we can compute the probability of all possible con-
figurations compatible with a given syndrome, we can define
the probability of a given half-splitting sl

i given a certain fixed

032431-8

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

FIG. 9. Notation of stabilizer splitting. Example of a pair of
splittings between two neighboring cells in the 4.8.8 lattice. The
splittings 0 and 1 are being updated, and the super index indicates
if we refer to the left or right half-stabilizer. The parity of the (half-)
stabilizers on the left cell are represented as si, while the parity of the
(half-) stabilizers on the right cell are notated with s′

i.

syndrome on the rest of splittings (where the superscript l
corresponds to the cell on the left, see Fig. 9). This proba-
bility corresponds to the fraction of possible configurations
compatible with the splitting choice, compared with the to-
tal probability of the possible configurations for all splitting
choices,

p(sl
i |{s}) = p(e|si, {s})

p(e|si = 0, {s}) + p(e|si = 1, {s})
. (18)

Seeing that every cell shares two stabilizers with each of its
neighbors, the splitting choice for these two stabilizers is not
independent. Therefore, we need to consider the joint prob-
abilities, where we consider each of the combined splitting
choices for the two splittings shared between two cells. There-
fore, the probability of a splitting choice for the stabilizers sl

0
and sl

1 given a fixed choice on the rest of splittings (which we
write as {s} for simplicity) can be written as

p(sl
0, sl

1|{s}) = p(e|sl
0, sl

1, {s})∑1
i, j=0 p(e|i, j, {s})

. (19)

Note that this expression is equivalent for all splitting pairs,
and we only wrote it explicitly for the first two splittings to
simplify the notation. Since the rest of the splitting choices are
not fixed, we can compute the estimate for the half-splitting
within a cell by combining the information from all splitting
choices. For this, we can use the information of the joint prob-
abilities p(sk, sk+1), which corresponds to our current estimate
of the probability of the half-splitting sk, sk+1 [e.g., the proba-
bility of the splitting choice could be p(s2 = 1, s3 = 1)]. The
estimate for the probability of a half-splitting configuration
within the cell can then be computed as the sum of Eq. (19)
for each splitting configuration of the other splittings involved
in the cell:

p(sl
0, sl

1) =
∑
{s}k

p(sl
0, sl

1|{s}k)
3∏

k=1

p(s2k, s2k+1). (20)

Finally, we want to find the probability of a given splitting
choice. This necessarily involves the configurations in both
the left and right cells, and the value of the parity vi of the

FIG. 10. Convergence of the splitting updates. We show the
statistics of the performance of the splitting updates. In the main
plot, we show the average fraction of splittings that have changed
the split choice on each split update round. In the inset plot, we show
the cumulative fraction of cases that have converged by each split
update round. We define a case to have converged at round r if that
was the last round with more than 3m changes in the splitting choice.
For both plots, the lines connecting numerical data points have been
drawn as a guide to the eye.

stabilizers that we are measuring. Combining the information
from both cells and ensuring the consistency condition sl

i ⊕
sr

i = vi, we can obtain the next estimate for the probability of
a given splitting choice as

psplit(s
l
0, sl

1) = p(sl
0, sl

1)p′(sr
0 = sl

0 ⊕ v0, sr
1 = sl

1 ⊕ v1)∑1
i, j=0 p(i, j)p′(i ⊕ v0, j ⊕ v1)

,

(21)
where ⊕ represents a binary sum, and v̄i = 1 ⊕ vi. Using
these equations, we can update our estimate for each of the
splitting choices.

During the splitting algorithm, we apply global updates to
the probabilities of the splitting choices by updating simul-
taneously the splitting probabilities of all splitting pairs in
the code. All of the updates for the estimates of the splitting
probabilities depend on the estimates from the previous step,
which are not overwritten until all new estimates have been
computed.

Although the number of global updates required for con-
vergence can vary between runs, we empirically find that the
average number of updates does not scale significantly with
the lattice size, with less than 15 update rounds required.
We test the convergence by measuring the average number
of changes in the splitting choice per splitting and per round.
We find that this ratio does not increase with the system size
(Fig. 10). Furthermore, we estimate the fraction of cases that
have converged after n-split update rounds. For a given error
case, we define the number of rounds until convergence as the
last update round with less than 3m changes in the split choice
(with m being the number of rescaling steps required for that
lattice size).

032431-9

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

G. Rescaling of the cells

After a splitting configuration is chosen, a correction can
be found within each of the cells in the lattice. The next step
in the decoder is to map each square cell to a pair of qubits.
The error probability of each qubit on the rescaled lattice
also needs to undergo a rescaling process. In this section, we
discuss the details on how to compute what is the resulting
error probability for the rescaled qubits.

The main idea to understand in the rescaling of the qubit
error probability is the fact that an error on a qubit in the
rescaled lattice corresponds to the application of a logical
operator on the qubit of the original lattice. If the original
correction in the cell is C, we can write a first estimate of
the error probability of the rescaled qubit given the splitting
choice σ as

p(L|σ) =
∑

{Sb} p(C + L + {Sb})∑
{Sb} p(C + {Sb}) + p(C + L + {Sb})

, (22)

where the sum over {Sb} represents all possible combinations
of the bulk stabilizers, L is the logical operator, and p(E) is
the probability of a given error configuration E .

For this estimate, we assumed that the splitting choice from
the previous step is correct. However, from the previous split-
ting step we know that we have an uncertainty in the splitting
choice. In addition, we have an estimate of the probability of
each splitting choice. Thus, we can include this information
about the other splitting choices, weighted by the probability
of each splitting choice, in the equation for the probability of
an error in the rescaled qubit.

In order to include the information from alternative split-
ting configurations, we first need to understand what this
probability of an alternative splitting means, and how to relate
it to the correction C that we applied on the cell during the
previous step. In particular, we need to find an expression of
p(L|σ̃k) for the alternative splittings σ̃k .

For the decoder of the 6.6.6 lattice [30], the key idea to find
this expression is that, by applying the stabilizer of a given
splitting, we can effectively change the choice of that splitting,
as there are an odd number of qubits from that stabilizer
on each cell. By applying the half-stabilizer corresponding
to the splitting, we could relate the different corrections that
correspond to each splitting choice, thus finding an expression
for p(L|σ̃k).

In contrast, on the 4.8.8 lattice, the support of the half-
stabilizers on each cell consists of an even number of qubits.
This means that by applying the stabilizer, we do not change
the value of the splitting choice for the splitting corresponding
to that stabilizer. However, for the 4.8.8 color code, splittings
come in pairs, as each cell shares two stabilizers. By applying
the stabilizer of one of these two splittings, we can effectively
change between the two choices of the neighbor splitting,
and thus relate the corrections corresponding to both splitting
choices. An example of this equivalence is shown in Fig. 11.

Following this rule, we can systematically find the
probability p(L|σk) for each of the 28 possible splitting con-
figurations within a given cell by following these steps:

(1) Find the difference in splitting choice between the
reference splitting σ0 (the one with the maximum probability,

FIG. 11. Each cell shares two stabilizers with each of the neigh-
boring cells, which need to be split. These two splittings form a pair
of splittings. By applying the half-stabilizer of one of the stabilizers,
the resulting correction corresponds to a change in the splitting
choice of the other splitting in the pair. In the figure, we can see
one example in which, by applying the half-stabilizer of one of the
splittings, we change the parity of the neighbor splitting and obtain
a valid correction for the new syndrome. The qubits affected by
applying the stabilizers are marked with orange diamonds, and the
stabilizer for which the splitting choice is changed is marked in
yellow.

chosen to find the correction) and the alternative splitting σk:
�k = (σ0 − σk) mod 2.

(2) For each splitting in �k , add the half-stabilizer of its
neighbor splitting. We call this product of half-stabilizers δk .

(3) Compute the conditional probability p(L|σk) by
adding to each configuration in Eq. (22) the product of half-
stabilizers δk .

(4) The final probability of error in the rescaled qubit can
be computed as the sum of each of the conditional proba-
bilities, weighted by our estimate of the probability of each
splitting choice:

p(L) =
∑

k

p(L|σk) p(σk)

=
∑

k

p(σk)
∑

{Sb} p(C + L + {Sb} + δk)∑
{Sb} p(C + {Sb} + δk) + p(C + L + {Sb} + δk)

.

(23)

Here, the sum over k selects the different combinations of
splitting choices, and the sum over {Sb} runs over all possible
combinations of products of the bulk stabilizers.

Finally, there is one more factor that we need to take
into account in the rescaling of the cells. Since each cell
corresponds to two different qubits, the error probabilities of
the two qubits in the cell are not independent. Thus, we can
compute the probabilities of having an error (Li) on each of the
two logical qubits on the cell, leading to the joint probabilities
for the four possible cases after the rescaling:

C̃{Sb},k = C + {Sb} + δk, (24)

p(10,11) =
∑

k

∑
{Sb} p(C̃{Sb},k)

Dk
p(σk), (25)

p(L0,11) =
∑

k

∑
{Sb} p(L0 + C̃{Sb},k)

Dk
p(σk), (26)

032431-10

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

FIG. 12. Logical performance. We plot the average logical error
rate vs the physical bit-flip (phase-flip) error rate for increasing size
of the code lattice. Below and up to p = 6.0%, the logical error rate
decreases with increasing system size (see main text and Fig. 13).

p(10, L1) =
∑

k

∑
{Sb} p(L1 + C̃{Sb},k)

Dk
p(σk), (27)

p(L0, L1) =
∑

k

∑
{Sb} p(L0 + L1 + C̃{Sb},k)

Dk
p(σk), (28)

Dk =
∑
{Sb}

1∑
l0,l1=0

p(Ll0
0 + Ll1

1 + C̃{Sb},k). (29)

Using these equations, we can compute the joint error
probabilities for the rescaled qubits in tuples. We can then use
these probabilities directly to compute further probabilities,
or obtain the error probabilities of the individual qubits by
marginalizing the second qubit from the probability distribu-
tion.

IV. RESULTS

To estimate the threshold of the decoder for code ca-
pacity noise, we run Monte Carlo simulations, generating
distributions of errors with different physical error rates and
evaluating the logical error rate after decoding on each of
the four logical qubits. We study bit-flip errors, as detailed
in Sec. II. The behavior of the logical error rate as a function
of the bit-flip error rate is presented in Fig. 12, showing the
average error rate of the four logical qubits.

For each system size, the point at which the logical error
rate equals the physical error rate is called the level-1 pseu-
dothreshold [56]. To obtain the threshold of the decoder, we
find the infinite-size limit by fitting the pseudothresholds to
the following ansatz [57]:

t (L) = aL− 1
ν + t∞, (30)

where t (L) is the pseudothreshold at system size of code
distance L, and the unknown parameters are t∞, the threshold
in the infinite limit; ν, the scaling exponent; and the coefficient

FIG. 13. Code capacity noise error threshold for the 4.8.8 color
code decoder. By fitting the pseudothresholds to a finite-size scaling
ansatz of Eq. (30), we estimate the threshold of the decoder as 6.0%
for code capacity noise (independent phase and bit-flip errors with
ideal syndrome measurement).

a. From a least-squares fit we obtain a threshold t∞ � 6.0%
and a scaling exponent around ν � 1.6. The results are shown
in Fig. 13.

V. CONCLUSIONS AND OUTLOOK

In our work we have presented an RG decoder for the 2D
color code on the 4.8.8 lattice. The decoder can find a correc-
tion through local operations and message passing between
the different regions of the code, after which the lattice can
be rescaled to a smaller version of itself. We numerically esti-
mate the code capacity threshold of our decoder for the 4.8.8
lattice to be 6.0%, assuming an error model of independent
bit- and phase-flip errors with perfect syndrome extraction.
This threshold lies below the 9.9%–10.3% obtained by other
decoders, like [35,38]. This shortcoming in terms of threshold
value has to be contrasted with the improvement in decoding
complexity, which scales as O(N log N) with the number of
qubits, which can be reduced to O(log N) by parallelization
(see Sec. I). When compared to the rescaling algorithm for the
color code on the hexagonal lattice (6.6.6 code), the threshold
value obtained for that lattice geometry is slightly higher, at
7.8% [30]. Understanding whether this discrepancy is due to
the lattice or due to the decoder requires further investigation
of the influence of each step on the outcome of the decoder,
as well as the interplay between the different steps, i.e., the
choice of the size of the elementary cells, the communication
between parts of the code, and the difference between the
geometries of the code lattices.

As an outlook, arguably the most interesting followup to
the presented work would be to adapt the decoding algorithm
to the case of noisy syndrome readout (phenomenological
noise) as has been done for related RG decoding schemes
targeted to surface codes [58,59]. This makes it necessary
to repeat stabilizer measurements in time and consequently

032431-11

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

Algorithm 2. Decoder recursive function

function: Decoder (Syndrome, error rates, m)
Result: Recovery operation
if m == 0 then

Apply brute force decoder
return Correction

end
Apply 3 rounds of belief propagation
Apply corner updates
Compute initial estimate of the split probabilities
for Number of split update rounds do

for each split pair do
Update the probability of each split choice

end

end
for each cell do

Apply local decoder
Rescale the cells to effective qubits

end
Compute rescaled error rates of the effective qubits
Apply Decoder (new syndrome, new error rates, m− 1)
Back-propagate the corrections from m − 1
return Correction

the RG scheme has to be suitably adapted to three dimen-
sions. The noise model could be refined further with the
addition of, e.g., leakage noise or correlated noise [60]. This
would provide insight into the experimentally relevant case
of circuit-level noise to ultimately judge the practical benefit
of the tradeoff between improved decoding speed and lower
threshold value.

The code underlying the numerical simulations is available
at [61].

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with colleagues from
the eQual and AQTION collaborations, in particular with C.
Ryan-Anderson and M. Gutierrez. We thank P. Sarvepalli
for useful information on technical aspects of the decoder
developed in Ref. [30]. We gratefully acknowledge support by
the EU Quantum Technology Flagship grant AQTION, Grant
No. 820495. The research is based upon work supported by
the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA),
via the U.S. Army Research Office Grant No. W911NF-16-1-
0070. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
view of the U.S. Army Research Office. We acknowledge
computational resources provided by Supercomputing Wales.

FIG. 14. Computing time. Time required by the decoder to de-
code lattices of different numbers of qubits N . The results show an
almost linear scaling of the runtime when fitted to the ansatz t = aNb

(shown in orange), with an exponent b � 1.0(1). Statistical error bars
on the data points are smaller than the marker size.

APPENDIX A: PSEUDOCODE

In this Appendix we provide a more detailed pseudocode
of the decoder algorithm. The decoder function is written as
a recursive function for a given lattice size m, each of which
receives as an input the syndrome (values of the parity of the
stabilizers) and the estimates of the error probabilities of each
qubit. This function outputs the correction for a given lattice
size.

APPENDIX B: SIMULATION DATA AND RUNTIME
CONSIDERATIONS

The following table shows a selection of simulation results
for the logical qubit error rate for a system size of N physical
qubits and a physical error rate p, averaged over the four
logical qubits. The complete results from the simulations are
shown in Fig. 12.

���������N
p

0.045 0.065

72 0.0293(2) 0.0659(3)
648 0.0088(3) 0.0533(7)
5832 0.0045(5) 0.067(2)
52488 0.003(1) 0.099(3)

We measured the computing time required by the simula-
tions using a processor of type IntelCore i7-865U @1.9GHz.
The results are shown in Fig. 14 and in the following table.

032431-12

RESCALING DECODER FOR TWO-DIMENSIONAL … PHYSICAL REVIEW A 106, 032431 (2022)

N t (s)

72 7.(7)
648 7(9)
5832 7(4)0
52488 6(3)00

From the different steps of the decoder, there are two sub-
routines that require most of the computing time: The splitting
of the stabilizers (see Sec. III F), which takes about 89.8%
of the computing time, and the rescaling of the cells (see
Sec. III G), which requires around 10% of the computing time,
as shown in the sketch in Fig. 15.

Note that both of these tasks could be highly parallelized,
as the update of the splitting probabilities can be done lo-
cally on the lattice, and simultaneously for each splitting
pair, thereby reducing the time of this subroutine from O(N)
to O(1). Similarly, the rescaling of the cells can be done
locally and simultaneously for each cell, reducing the com-
putational runtime of this part from O(N log N) to O(log N),
and thereby of the overall decoder to O(log(N)). We also
note that the software underlying the presented results has
not been written with runtime as the primary target and
thus has potential for efficiency optimization. Together with

FIG. 15. Runtime budget of the decoder. The most resource
intensive parts of the decoder are the updates of the splitting prob-
abilities (see Sec. III F), followed by the rescaling of the cells to
effective qubits (see Sec. III G). The remaining steps of the decoder
require about 0.2% of the computing time.

the above-described parallelization, this bears the potential to
reduce the computing time by several orders of magnitude, in
particular for the largest lattice sizes. The above-mentioned
parallelization of the subroutines of the decoder will also be
the method of choice in future extensions of the decoder to
cope with circuit noise, for potential use in decoding actual
2D error corrected quantum hardware.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[2] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[3] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computa-
tion with constant error rate, SIAM J. Comput. 38, 1207 (2008).

[4] P. W. Shor, Fault-tolerant quantum computation, in Proceedings
of 37th Conference on Foundations of Computer Science (IEEE,
Piscataway, NJ, 1996), p. 56.

[5] J. Preskill, Reliable quantum computers, Proc. R. Soc. London
A 454, 385 (1998).

[6] A. Yu. Kitaev, Quantum error correction with imperfect gates,
in Quantum Communication, Computing, and Measurement
(Springer, Boston, MA, 1997), p. 181.

[7] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303, 2 (2003).

[8] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[9] H. Bombin and M. A. Martin-Delgado, Topological Quantum
Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[10] H. Bombin and M. A. Martin-Delgado, Topological Computa-
tion without Braiding, Phys. Rev. Lett. 98, 160502 (2007).

[11] R. Raussendorf and J. Harrington, Fault-Tolerant Quantum
Computation with High Threshold in Two Dimensions, Phys.
Rev. Lett. 98, 190504 (2007).

[12] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich,
T. Monz, M. A. Martin-Delgado, and R. Blatt, Quantum com-
putations on a topologically encoded qubit, Science 345, 302
(2014).

[13] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin,
J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C.
Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber,
B. Neyenhuis, D. Hayes, and R. P. Stutz, Realization of Real-
Time Fault-Tolerant Quantum Error Correction, Phys. Rev. X
11, 041058 (2021).

[14] K. J. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman,
C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth et al.,
Realizing topologically ordered states on a quantum processor,
Science 374, 1237 (2021).

[15] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, Repeated
quantum error detection in a surface code, Nat. Phys. 16, 875
(2020).

[16] L. Postler, S. Heuen, I. Pogorelov, M. Rispler, T. Feldker, M.
Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P.
Schindler, M. Müller, and T. Monz, Demonstration of fault-
tolerant universal quantum gate operations, Nature (London)
605, 675 (2022).

[17] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, Scalable
quantum circuit and control for a superconducting surface code,
Phys. Rev. Appl. 8, 034021 (2017).

[18] J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N.
Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman,
N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, and L.
DiCarlo, Logical-qubit operations in an error-detecting surface
code, Nat. Phys. 18, 80 (2022).

[19] M. Takita, A. D. Córcoles, E. Magesan, B. Abdo, M. Brink,
A. Cross, J. M. Chow, and J. M. Gambetta, Demonstration of

032431-13

https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.98.190504
https://doi.org/10.1126/science.1253742
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1038/s41567-021-01423-9

PARRADO-RODRÍGUEZ, RISPLER, AND MÜLLER PHYSICAL REVIEW A 106, 032431 (2022)

Weight-Four Parity Measurements in the Surface Code Archi-
tecture, Phys. Rev. Lett. 117, 210505 (2016).

[20] J. Hilder, D. Pijn, O. Onishchenko, A. Stahl, M. Orth, B.
Lekitsch, A. Rodriguez-Blanco, M. Müller, F. Schmidt-Kaler,
and U. G. Poschinger, Fault-Tolerant Parity Readout on a
Shuttling-Based Trapped-Ion Quantum Computer, Phys. Rev.
X 12, 011032 (2022).

[21] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C.
Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J.
Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and
A. Wallraff, Realizing repeated quantum error correction in a
distance-three surface code, Nature (London) 605, 669 (2022).

[22] B. Eastin and E. Knill, Restrictions on Transversal Encoded
Quantum Gate Sets, Phys. Rev. Lett. 102, 110502 (2009).

[23] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[24] C. Chamberland and K. Noh, Very low overhead fault-tolerant
magic state preparation using redundant ancilla encoding and
flag qubits, npj Quantum Inf. 6, 91 (2020).

[25] A. Krishna and J.-P. Tillich, Towards Low Overhead Magic
State Distillation, Phys. Rev. Lett. 123, 070507 (2019).

[26] D. Litinski, Magic state distillation: Not as costly as you think,
Quantum 3, 205 (2019).

[27] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant
quantum computing with color codes, arXiv:1108.5738.

[28] H. G. Katzgraber, H. Bombin, and M. A. Martin-Delgado, Er-
ror Threshold for Color Codes and Random Three-Body Ising
Models, Phys. Rev. Lett. 103, 090501 (2009).

[29] R. S. Andrist, H. G. Katzgraber, H. Bombin, and M. A. Martin-
Delgado, Tricolored lattice gauge theory with randomness:
Fault tolerance in topological color codes, New J. Phys. 13,
083006 (2011).

[30] P. Sarvepalli and R. Raussendorf, Efficient decoding of topo-
logical color codes, Phys. Rev. A 85, 022317 (2012).

[31] D. S. Wang, A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg,
Graphical algorithms and threshold error rates for the 2d color
code, Quantum Inf. Comput. 10, 780 (2010).

[32] A. M. Stephens, Efficient fault-tolerant decoding of topological
color codes, arXiv:1402.3037.

[33] N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advantages
of versatile neural-network decoding for topological codes,
Phys. Rev. A 99, 052351 (2019).

[34] N. Delfosse, Decoding color codes by projection onto surface
codes, Phys. Rev. A 89, 012317 (2014).

[35] N. Delfosse and N. H. Nickerson, Almost-linear time decoding
algorithm for topological codes, Quantum 5, 595 (2021).

[36] N. Delfosse and G. Zémor, Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel,
Phys. Rev. Res. 2, 033042 (2020).

[37] A. Kubica and J. Preskill, Cellular-Automaton Decoders with
Provable Thresholds for Topological Codes, Phys. Rev. Lett.
123, 020501 (2019).

[38] A. Kubica and N. Delfosse, Efficient color code decoders in
d � 2 dimensions from toric code decoders, arXiv:1905.07393.

[39] P. Baireuther, M. D. Caio, B. Criger, C. W. J. Beenakker, and
T. E. O’Brien, Neural network decoder for topological color
codes with circuit level noise, New J. Phys. 21, 013003 (2019).

[40] C. Chamberland and P. Ronagh, Deep neural decoders for
near term fault-tolerant experiments, Quantum Sci. Technol. 3,
044002 (2018).

[41] A. Davaasuren, Y. Suzuki, K. Fujii, and M. Koashi, General
framework for constructing fast and near-optimal machine-
learning-based decoder of the topological stabilizer codes,
Phys. Rev. Res. 2, 033399 (2020).

[42] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[43] V. Kolmogorov, Blossom v: A new implementation of a
minimum cost perfect matching algorithm, Math. Program.
Computat. 1, 43 (2009).

[44] H. N. Gabow, The weighted matching approach to maximum
cardinality matching, Fund. Inf. 154, 109 (2017).

[45] R. Duan, S. Pettie, and H.-H. Su, Scaling algorithms for
weighted matching in general graphs, ACM Trans. Algorithms
14, 1 (2018).

[46] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topological
Quantum Codes, Phys. Rev. Lett. 104, 050504 (2010).

[47] H. Bombin, An introduction to topological quantum codes,
Quantum Error Correction (Cambridge University Press, Cam-
bridge, 2013).

[48] A. R. Calderbank and P. W. Shor, Good quantum
error-correcting codes exist, Phys. Rev. A 54, 1098
(1996).

[49] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[50] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms (Cambridge University Press, Cambridge, 2003).

[51] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding
belief propagation and its generalizations, in Exploring Artifi-
cial Intelligence in the New Millennium (Morgan Kaufmann,
Burlington, MA, 2003), p. 239.

[52] J. Pearl, Reverend Bayes on inference engines: A distributed
hierarchical approach, in AAAI’82: Proceedings of the Second
AAAI Conference on Artificial Intelligence (AAAI Press, Palo
Alto, CA, 1982), p. 133.

[53] D. J. C. MacKay and R. M. Neal, Near Shannon limit perfor-
mance of low density parity check codes, Electron. Lett. 32,
1645 (1996).

[54] D. Poulin and Y. Chung, On the iterative decoding of
sparse quantum codes, Quantum Inf. Comput. 8, 987
(2008).

[55] J.-H. Kim, M.-Y. Nam, and H.-Y. Song, Variable-to-check
residual belief propagation for LDPC codes, Electron. Lett. 45,
117 (2009).

[56] K. Svore, A. Cross, I. Chuang, and A. Aho, A flow-map model
for analyzing pseudothresholds in fault-tolerant quantum com-
puting, Quantum Inf. Comput. 6, 193 (2006).

[57] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs
transition in a disordered gauge theory and the accu-
racy threshold for quantum memory, Ann. Phys. 303, 31
(2003).

[58] G. Duclos-Cianci and D. Poulin, Fault-tolerant renormaliza-
tion group decoder for abelian topological codes, Quantum Inf.
Comput. 14, 721 (2014).

[59] K. Duivenvoorden, N. P. Breuckmann, and B. M. Terhal, Renor-
malization group decoder for a four-dimensional toric code,
IEEE Trans. Inf. Theory 65, 2545 (2018).

[60] C. T. Chubb and S. T. Flammia, Statistical mechanical mod-
els for quantum codes with correlated noise, Ann. Inst. Henri
Poincare D 8, 269 (2021).

[61] P. Parrado-Rodríguez, Rescaling decoder 488, https://gitlab.
com/pedroparrado/rescalingdecoder488.

032431-14

https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevX.12.011032
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/s41534-020-00319-5
https://doi.org/10.1103/PhysRevLett.123.070507
https://doi.org/10.22331/q-2019-12-02-205
http://arxiv.org/abs/arXiv:1108.5738
https://doi.org/10.1103/PhysRevLett.103.090501
https://doi.org/10.1088/1367-2630/13/8/083006
https://doi.org/10.1103/PhysRevA.85.022317
https://doi.org/10.26421/QIC10.9-10-5
http://arxiv.org/abs/arXiv:1402.3037
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevA.89.012317
https://doi.org/10.22331/q-2021-12-02-595
https://doi.org/10.1103/PhysRevResearch.2.033042
https://doi.org/10.1103/PhysRevLett.123.020501
http://arxiv.org/abs/arXiv:1905.07393
https://doi.org/10.1088/1367-2630/aaf29e
https://doi.org/10.1088/2058-9565/aad1f7
https://doi.org/10.1103/PhysRevResearch.2.033399
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.3233/FI-2017-1555
https://doi.org/10.1145/3155301
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1049/el:19961141
https://dl.acm.org/doi/10.5555/2016985.2016993
https://doi.org/10.1049/el:20092505
https://doi.org/10.26421/QIC6.3-1
https://doi.org/10.1016/S0003-4916(02)00019-2
https://dl.acm.org/doi/10.5555/2638670.2638671
https://doi.org/10.1109/TIT.2018.2879937
https://doi.org/10.4171/AIHPD/105
https://gitlab.com/pedroparrado/rescalingdecoder488

