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Phase flip code with semiconductor spin qubits
F. van Riggelen 1, W. I. L. Lawrie 1, M. Russ 1, N. W. Hendrickx1, A. Sammak2, M. Rispler3,4, B. M. Terhal 3,4,5, G. Scappucci 1 and
M. Veldhorst 1✉

The fault-tolerant operation of logical qubits is an important requirement for realizing a universal quantum computer. Spin qubits
based on quantum dots have great potential to be scaled to large numbers because of their compatibility with standard
semiconductor manufacturing. Here, we show that a quantum error correction code can be implemented using a four-qubit array in
germanium. We demonstrate a resonant SWAP gate and by combining controlled-Z and controlled-S−1 gates we construct a
Toffoli-like three-qubit gate. We execute a two-qubit phase flip code and find that we can preserve the state of the data qubit by
applying a refocusing pulse to the ancilla qubit. In addition, we implement a phase flip code on three qubits, making use of a
Toffoli-like gate for the final correction step. Both the quality and quantity of the qubits will require significant improvement to
achieve fault-tolerance. However, the capability to implement quantum error correction codes enables co-design development of
quantum hardware and software, where codes tailored to the properties of spin qubits and advances in fabrication and operation
can now come together to advance semiconductor quantum technology.
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INTRODUCTION
A universal quantum computer may be able to address a range of
challenges1–3, but will require many logical qubits for fault-
tolerant operation4. While errors on individual qubits are
unavoidable, logical qubits can be encoded in multiple physical
qubits, facilitating error correction codes that preserve the
quantum state5. There are several ways to encode logical qubits
that allow for the correction of different errors using a variety of
error-correction strategies. The simplest error correction codes, the
bit flip code and the phase flip code6–10, correct for the
fundamental type of error after which they are named. One of
the most promising error correction codes is the surface code11,
which can correct any error affecting a sufficiently low number of
qubits. Using an error correction code, however, can only help to
achieve low logical error rates when all error rates on the physical
qubits (of initialization, control and readout) are below a thresh-
old, dependent on the protocol.
The relevance of quantum error correction has spurred

significant research in a multitude of platforms and exciting
progress has been made in superconducting qubits12–15, solid-
state qubits using NV centers in diamond16–18, and trapped-ion
qubits19,20. Semiconductor qubits based on spins in quantum dots
have not yet advanced to match the larger qubit counts of
competing technologies21, but important progress has been made
in achieving high-fidelity operations. Fast and high-fidelity read-
out22,23, single-qubit control24–27, two-qubit logic28–30, and reso-
nant three-qubit and four-qubit gates26 have been demonstrated
in separate experiments.
Quantum wells in planar germanium heterostructures (Ge/SiGe)

can bring together advantages of several semiconductor quantum
dots platforms31. Like silicon, natural germanium contains nuclear-
spin-free isotopes and can be isotopically purified32,33. Hole states
in Ge/SiGe have a low effective mass34, relaxing the fabrication
requirements of nanostructures. Moreover, the strong spin-orbit

interaction allows for fast and all-electric qubit operation35–38. The
spin-orbit interaction also creates a channel through which charge
noise can couple to the spin states, currently limiting the
coherence time. A dephasing time T�2 = 800 ns has been reported
for single spin qubits36 and T�2 = 1 μs for singlet-triplet qubits
operated at low magnetic fields39. Using dynamical decoupling
sequences, coherence times could be extended up to
T2= 100 μs26. On the other hand, hole spin qubits in Ge/SiGe do
not suffer from valley degeneracy34, which still presents a major
challenge for electrons in silicon40,41. Furthermore, advancements
in heterostructure growth have yielded low disorder and charge
noise42. These characteristics have facilitated the development of
planar germanium quantum dots43 and quantum dot arrays44,
spin relaxation times up to 32 ms45, single-hole qubits46, singlet-
triplet qubits39, two-qubit logic36, and universal operation of a
four-qubit germanium quantum processor26. The spin-orbit
coupling in germanium avoids the need to implement compo-
nents such as striplines and nanomagnets, promising scalability in
two dimensions26,47, crucial for the implementation of error
correction codes5.
Here, we perform quantum error correction on a two-by-two

array of spin qubits in germanium. Similar to other spin qubit
platforms, hole spin qubits have long relaxation times45, such
that the dominant type of decoherence is dephasing. We
therefore focus on the implementation of a rudimentary phase
flip code. In order to realize this, we implement a controlled-Z
(CZ) gate, a controlled-S−1 (CS−1) gate and a native resonance
SWAP gate48. Using the CZ and CS−1 gates, together with
single-qubit gates, we construct a Toffoli-like gate. Additionally,
we show that we can coherently transfer phase information
between the data and ancilla qubits and implement the
majority vote for error correction of the phase flip code on
three qubits.
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RESULTS AND DISCUSSION
Phase flip code
The error correction code considered here is a three-qubit phase
flip code49, the steps of which are depicted in Fig. 1a. At the start
of the experiment, the data qubit could in principle hold any
quantum state Ψj i= α 0j i þ β 1j i and both ancilla qubits start in
the basis state 0j i. In the encoding step, the state of the data qubit
is mapped to the ancilla qubits and the system is brought into the
state α þþþj i þ β ���j i. After the encoding, we intentionally
induce errors either by deterministically implementing a rotation
around the Z axis of the Bloch sphere with angle φ (Z(φ)), a full
phase flip Z(φ= π) with a probability p, or by leaving the qubits
idle for some time. In the decoding step, we disentangle the
logical qubit, where all single-phase errors lead to a unique error
syndrome. In the final step of the code, a phase error is corrected.
The ancillas are not measured, but the data qubit is corrected
using a three-qubit gate depending on the error syndrome of the
ancilla qubits50. This correction protocol is capable of correcting
any phase error Z(φ) on a single qubit, but it cannot correct phase
errors that occur on different physical qubits simultaneously, nor
can it handle errors in the encoding, decoding and correction
steps.

Properties of the four-qubit register
The implementation of the phase flip code strongly depends on
the design and properties of the quantum device. The quantum
dots are defined in a strained germanium quantum well, using
two layers of metallic gates and low resistance Ohmic contacts are
made by diffusing aluminium contacts directly into the quantum
well26,44. Figure 1b gives an impression of the potential landscape
which is formed by applying negative voltages on four plunger
gates, forming quantum dots underneath. Each quantum dot is
occupied by a single hole spin. The coupling between the
quantum dots is controlled by dedicated barrier gates. We
construct virtual barrier and plunger gates at the software level,
to independently control the detuning, on-site energy, and
exchange26. Two additional quantum dots (S1 and S2) act as
charge sensors and are operated using radio frequency reflecto-
metry for rapid readout26. Spin state readout is achieved using
spin-to-charge-conversion in the form of latched Pauli spin
blockade (PSB)26,51 (see Supplementary Methods 1). We can read
out the spin state of Q1 and Q2 using S1 (readout system Q1Q2,
red) and the spin state of Q3 and Q4 using S2 (readout system
Q3Q4, green).
An external magnetic field of 0.65 T is applied in plane of the

quantum well, resulting in energy splittings of 1.393 GHz, 2.192

GHz, 2.101 GHz and 2.412 GHz for Q1, Q2, Q3 and Q4 respectively,
between the spin down #j i (which we define to be 0j i) and spin
up ( 1j i). Here, we use the convention of an X (Y) gate as a π/2
rotation, X2 (Y2) as a π rotation and X−1 (Y−1) as a− π/2 rotation
around the x̂ (ŷ) axis of the Bloch sphere52. Single-qubit rotations
are implemented by electric dipole spin resonance.
The choice of two-qubit gate is also dictated by the properties

of the device. Fast controlled-Z (CZ) gates53 are possible by
controlling the exchange interaction using the barrier gates26. The
CZ gate is calibrated using a Ramsey experiment52, where we use
a Tukey shaped pulse to turn exchange on and off. Details of this
experiment can be found in Supplementary Methods 2. We use CZ
gates between Q1 and Q4 and between Q3 and Q4 for the
entangling and disentangling in the phase flip code.

Two-qubit phase flip code
As a stepping stone towards the three-qubit phase flip code, we
first implement a two-qubit phase flip code. The two-qubit code
consists of the same steps (encode, phase errors, decode, and
correct) but differs from the three-qubit code in that a phase error
can only be corrected on the data qubit. However, it does
demonstrate that information can be coherently transferred
between data and ancilla qubits.
The compiled gate set of the two-qubit phase flip code is

depicted in Fig. 2a. We use Q4 as data qubit and Q1 as ancilla
qubit. The encoding (beige) is performed by a Hadamard-CZ-
Hadamard sequence49, where the Hadamards are replaced by Y−1

gates. The phase errors are induced by leaving the qubits idle for
some time (soft red). Since this code should correct for a phase
error on the data qubit, one would expect that the dephasing time
of the ancilla qubit Q1 is the limiting factor. Ramsey experiments
(Fig. 2e) yield pure dephasing times (T�2) of 0.28 ± 0.1 μs and
0.23 ± 0.1 μs for Q1 and Q4 respectively. These are comparable to
the decay time (τ) of 0.26 ± 0.01μs corresponding to the two-qubit
phase flip code, shown in Fig. 2b. The fact that the phase errors on
the ancilla qubit are limiting can be seen even more clearly when
a refocusing pulse is applied to the ancilla qubit (blue box in Fig.
2a). The result of this experiment is shown in Fig. 2c and gives
τ= 1.86 ± 0.05 μs. We have also run this experiment with the data
qubit starting in the basis state #j i (Supplementary Fig. 1). The
result is shown in Fig. 2d and gives τ= 2.31 ± 0.02 μs. For
comparison, the results of a Hahn echo experiment are shown for
both Q1 and Q4 in Fig. 2e. We extract THahn2 = 2.72 ± 0.05 μs and
3.26 ± 0.04 μs for Q1 and Q4 respectively. The two-qubit phase flip
code is also performed with Q3 as ancilla qubit instead of Q1
(Supplementary Fig. 1), in which case we find τ= 3.16 ± 0.03 μs.
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Fig. 1 Error-correction circuit diagram and properties of the four-spin qubit register. a Quantum error correction circuit using one data
qubit and two ancilla qubits. Qubits are encoded to a logical state (beige) in which they are resilient against single-qubit phase errors (soft
red), since these errors result in distinct states of the ancilla qubits which, after the decoding (turquoise), can be used to correct the data qubit
(gray). b Schematic drawing giving an impression of the electrostatic potential of the quantum device. Using electrostatic potentials on
metallic gates, four quantum dots are defined, each containing a single hole spin qubit. The qubits are indicated with a color: qubit 1 (Q1) in
blue, qubit 2 (Q2) in orange, qubit 3 (Q3) in yellow and qubit 4 (Q4) in purple. The spin states are read out by spin-to-charge-conversion using
latched Pauli spin blockade using the two charge sensors, S1 and S2, indicated in red and green respectively. c Table showing the relevant
time scales of the four qubits used in this work. The spin relaxation time is measured on the same device but at a higher magnetic field26.
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Note that when a different ancilla qubit is used (Q3 instead of Q1),
but the same data qubit (Q4), τ changes. The fact that τ is limited
by the decoherence of the ancilla qubit, instead of the data qubit,
shows that the quantum information is indeed transferred to the
ancilla qubit and we implemented the two-qubit phase flip code
successfully.

Resonant SWAP, CS−1 and Toffoli-like gate
Since we use PSB readout, we can only read out the state of an
individual qubit when the state of the other qubit in the readout
system is known. Therefore, when using Q4 as data qubit and Q3
as one of the ancilla qubits, it is necessary to reinitialize Q3. We
enable this by performing a SWAP gate on Q3 and Q2, with Q2
initialized to the state #j i. Implementing a diabatic SWAP gate is
difficult due to the relatively large Zeeman energy difference
between Q2 and Q354,55. While a SWAP can be compiled from a
series of CZ gates and single-qubit operations, here we implement
a resonant SWAP48 by applying an electric pulse as depicted in
Fig. 3a to the barrier gate. This pulse is an oscillating exchange

pulse, resonant with the difference in Zeeman energy of Q2 and
Q3, superimposed on a Tukey-shaped pulse (see Supplementary
Methods 3 for details on calibration). Figure 3a shows the circuit
diagram to demonstrate resetting the state of Q3 using the SWAP.
The result is shown in Fig. 3b, reading out either system Q1Q2
(red) or system Q3Q4 (green). This measurement shows that the
states of Q2 and Q3 are swapped, but imperfections in the
readout and initialization and in the calibration of the resonant
exchange pulse result in a small residual amplitude on Q3.
Figure 3c shows the circuit diagram to demonstrate the

controlled-S−1 (CS−1) gate. The calibration of the CS−1 gate is
similar to the CZ gate (see Supplementary Methods 2), however,
for the CS−1 gate the exchange pulse is calibrated to give a phase
difference of −π/2 between the experiments with and without a
preparation pulse on the control qubit. This is demonstrated in
Fig. 3d, where the results of a Ramsey experiment are shown with
(blue) and without (black) an X2 pulse on the control qubit Q1.
The Toffoli gate is a three-qubit gate, also called Controlled-

Controlled-NOT gate. In the three-qubit phase flip code, the
combination of the decoding step and the Toffoli gate performs

Q4

Q1

Fig. 2 Two-qubit phase flip code. a Circuit diagram. The encoding, decoding and correction are implemented using a combination of Y, Y−1

and CZ gates. By adding a wait time (twait) after the encoding, phase errors will occur due to the dephasing of the qubits. Q4 is the data qubit
and Q1 the ancilla qubit. b–d Pup as a function of twait when executing the two-qubit phase flip code, which gives a decay time τ. Results for
the data qubit prepared in Ψj i= X #j i and through single-qubit gates projected to a basis state for readout, without an echo pulse Y2 (b), with
an echo pulse Y2 (c), and with an echo pulse with the data qubit prepared to Ψj i= #j i (d). e For comparison we show the individual qubit
dephasing T�2 and coherence THahn2 times for Q1 (blue) and Q4 (purple).

Q2 Q4

Q1

Q4

Q1

Q3

Q3

Fig. 3 SWAP, CS−1 and Toffoli-like gate. a A resonant SWAP gate is implemented by applying a Tukey-shaped pulse with an oscillation
superimposed to the barrier gate between Q2 and Q3. It is tested using the depicted circuit diagram. b To demonstrate the SWAP gate, a Rabi
pulse X(θ) is applied to Q3, followed by a SWAP gate between Q2 and Q3. Then, either Q2 is read out using readout system Q1Q2 (red) or Q3 is
read out using readout system Q3Q4 (green). c Circuit diagram of the experiment demonstrating the CS−1 gate. d The CS−1 gate is obtained
by calibrating the phase difference to be− π/2, for the experiments with (blue) and without (black) an X2 gate on the control qubit Q1.
e Circuit diagram of the Toffoli-like gate (gray) composed of CS−1 and CZ gates. f Demonstration of the Toffoli-like gate with target qubit Q4
and control qubits Q1 and Q3. An X(θ) pulse is applied to Q1 and the final state of Q4 is measured using readout system Q3Q4. Results of the
experiment in e with (pink) and without (black) a preparation pulse X2 on ancilla qubit Q3.
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the majority vote. A resonant i-Toffoli was demonstrated in
previous work26, which would be the fastest implementation
when working in a regime where the exchange is on56. However,
the qubit states are also strongly sensitive to noise in this regime.
Here, we implement a Toffoli-like gate composed of CZ and CS−1

gates (Fig. 3e). This is equal to a Toffoli gate up to single and two-
qubit rotations on the control qubits57,58, which are irrelevant in
the protocol under study10. The matrix representation of this gate
is shown in Supplementary Discussion 1. We test the Toffoli-like
gate by applying it to different input states, as shown in Fig. 3e.
Here a Rabi pulse X(θ) is applied to control qubit Q1 and the state
of the target qubit Q4 is measured using readout system Q3Q4.
Figure 3f shows the result with (pink) and without (black) an
additional preparation pulse on the second control qubit, Q3. If
neither of the control qubits is in the "j i state (when X(θ= 0)) or
when only one control qubit is in the "j i state (when X(θ= π) on
Q1), the target qubit remains in the #j i state. Only when both
control qubits are in the "j i state, the target qubit flips. The result
of a similar experiment, where a Rabi pulse X(θ) is applied to the
other control qubit, Q3, is shown in the Supplementary Discussion
1. By applying a Rabi pulse X(θ) on Q1 (Q3), it is shown that this
implementation of the Toffoli-like gate works for all XðθÞ #j i of
Q1 (Q3).

Three-qubit phase flip code
We now turn to the three-qubit phase flip code, of which the
circuit diagram is shown in Fig. 4a. The four-qubit system is
initialized to the ####j i state, after which we prepare the data
qubit, Q4, in a state Ψj i. After the encoding step (beige),
refocusing pulses are applied to all three qubits. The errors are
implemented by either sweeping the phase Z(φ) or by applying a
full phase flip Z(φ= π) with probability p (soft red). Subsequently,
the qubits are decoded (turquoise). The correction step (gray) is
implemented with the Toffoli-like gate shown in Fig. 3e. The data
qubit state is projected through single-qubit gates to #j i, the
states of Q3 and Q2 are swapped and finally the data qubit, Q4, is
read out using readout system Q3Q4.
This quantum error correction code corrects for a full phase flip

as well as an arbitrary Z(φ) rotation on a single qubit. When a
phase error Z(φ) occurs on a qubit, it is in a superposition of being

in the correct state (with the ancillas indicating as such) and a
state with a phase error (with one or both ancillas being flipped),
and the Toffoli-like gate will be able to correct this superposition
state. Figure 4b, c show the state probability (Γ) (i.e. the chance
that the data qubit is successfully rotated back to the #j i state) for
errors implemented by sweeping the phase Z(φ). This error is
applied to one qubit at a time, the results are plotted in purple,
blue and yellow for an error implemented on Q4, Q1 and Q3
respectively. For comparison, the result is also shown when the
phase flip code is performed while implementing the error Z(φ) on
all three qubits simultaneously (dark blue) and without imple-
menting an error at all (gray). These experiments are performed
for two different input states of the data qubit, a basis state ( Ψj i=
#j i) and a superposition state ( Ψj i= X #j i), shown in Fig. 3b, c
respectively. Only when the data qubit is prepared in a
superposition state, does the encoding step entangle the data
qubit with the two ancilla qubits. One expects that when
sweeping the phase Z(φ) on one of the qubits, the error is
corrected and the result is a constant high Γ. For sweeping the
phase on all three qubits simultaneously, it is expected that the
error is not corrected and Γ varies from high to low and back. It is
apparent from the results in Fig. 4b, c that for both input states the
single-qubit errors are not corrected perfectly. This is due to
unintentional errors, i.e. errors occurring in the encoding,
decoding and correction steps of the algorithm. These errors are
caused by decoherence of the qubits, and are coherent errors
such as residual exchange between the qubits (Supplementary
Fig. 2), cross talk27,59 and imperfect two-qubit gates. When
comparing the results for the different input states of the data
qubit, it becomes clear that for an input state #j i of the data qubit
the visibility is higher and the correction of the single-qubit errors
is more successful. We ascribe this improvement to the decreased
time during which any unintentional errors can affect the data
qubit when it starts in a basis state, and the fact that is less
sensitive to imperfections in the two-qubit gates. To gain further
insight into the results of this experiment, we performed a
simulation (Supplementary Discussion 2). We ran the simulation
with only coherent errors and with coherent errors plus
decoherence, in order to understand which of these unintentional
errors are the main limiting factors for the implementation of the

Q4

Q1

Q3

Q2

Fig. 4 Three-qubit phase flip code. a Implementation of the three-qubit phase flip code. Q4 serves as data qubit, Q1 and Q3 as ancilla qubits,
and Q2 as reset qubit for Q3. The correction step is implemented with the Toffoli-like gate as shown in Fig. 3e. The data qubit is read out with
readout system Q3Q4, which makes it necessary to reset Q3 using a resonant SWAP operation with Q2. b, c Results of the phase flip code
while introducing a phase error Z(φ) on none of the qubits (gray), on Q4 (purple), Q1 (blue) or Q3 (yellow) or on all three qubits simultaneously
(dark blue). The initial state of the data qubit is #j i in b and X #j i in c. d Phase flip code with introducing phase errors Z(φ= π) with probability
p. The data qubit is prepared to the state X #j i and through single-qubit gates projected to the #j i state for readout. Plotted is the state
probability (Γ), the error bars indicate the standard deviation. The results are fitted using a model which takes into account the readout and
reset errors (see Supplementary Discussion 4). The standard deviation of the fit is indicated by the light blue area. The inset shows the curve
for ideal phase flip correction (Γideal) and the linear line for no phase flip correction (Γlinear).
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phase flip code. When including both coherent errors and
decoherence, the simulation results are in qualitative agreement
with the measurement results. Both the experimental and
simulated data show that errors have a more profound impact
when starting in a superposition state compared to starting in a
basis state. We can therefore conclude from the simulations that a
limiting factor for the implementation of the phase flip code is the
decoherence of the qubits.
Furthermore, we study the three-qubit phase flip code by

inserting a full phase flip Z(φ= π) with probability p. The data
qubit starts in the state Ψj i= X #j i and before the data qubit is
measured, we project the state to #j i by applying corresponding
single-qubit gates. In Fig. 4d the state probability Γ is plotted
against the probability of implementing a phase flip (p). Ideally,
the data is described by Γideal(p)= 1− 3p2+ 2p3 49. The ideal
function shows a modest improvement of the state probability for
p < 0.5, compared to the linear line Γlinear(p)= 1− p expected for
no error correction (see inset Fig. 4d). While the data in Fig. 4d
follows the overall trend, there are some interesting differences.
We first note that since the data qubit starts in the Ψj i= X #j i
state, the data qubit is very sensitive to unintentional errors,
resulting in a reduced visibility. Second, the data in Fig. 4d does
not show a trend symmetric around Γ(p= 0.5). This asymmetry
can be caused by errors in the reset of Q3 combined with
asymmetry in the readout scheme (illustrated in the Supplemen-
tary Methods 1). For example, when the reset of Q3 using the
SWAP is imperfect, the error that is introduced is not random, but
depends on the history of Q3. Due to the asymmetry of the
readout, an imperfect reset of Q3 affects the measurement results
of zero or a single intentional error differently than the
measurement results for two or three intentional errors. This
physical knowledge of the qubit system is taken into account as
boundary conditions for the fit and gives the fit function:
Γ(p)= b+ a(0.95− 1.73ϵ p− 2.79 p2+ 3.9ϵ p2+ 1.86p3− 2.17ϵ p3),
where a is the visibility, b the offset and ϵ the error parameter
modeling asymmetry (See Supplementary Discussion 4 for the
derivation). We obtain the fit parameters a= 0.272 ± 0.007,
b= 0.394 ± 0.003 and ϵ= 0.37 ± 0.13. As expected a and b reflect
that the visibility is reduced and that the offset is significant. We
note that if ϵ= 0, the symmetric shape of Γideal is recovered,
meaning that Γ is improved for p < 0.5 when comparing to Γlinear
with similar visibility (dashed purple line in the main panel of 4d).
For ϵ= 0.37 as fitted here, the state probability still shows a small
improvement for p < 0.27, compared to Γlinear. When we insert the
found fit parameters into the fit function, it simplifies to a
polynomial with a linear term of −0.17 ± 0.06. This corresponds to
a modest flattening of the curve for small error probability as is
visible in Fig. 4d.
When considering Fig. 4d, it is important to realize that the

experiment performed to obtain this data is significantly different
compared to prior works9,10. In these works, the effective
probability of a phase error was calculated using peff= sin2(φ/2),
where the error Z(φ) is implemented on all three qubits
simultaneously. We instead run the phase flip code numerous
times and randomly implement a phase flip error with a certain
probability on all three qubits. Rather than changing φ, we actually
changed the probability of the error. This procedure requires
significantly more data and time, thus results in larger error bars,
but it does capture the realistic scenario in which it is not known a
priori if an error would occur and on which qubit. For
completeness, we used the data shown in Fig. 4b, c to also plot
Γ as a function of peff (Supplementary Discussion 3). This data is
fitted using a polynomial and gives a linear term of −0.07 ± 0.05.
The conclusion we can draw from this analysis is similar to the
conclusion we draw from the data shown in Fig. 4d: although not
perfectly, the logical error rate has a suppressed first-order
contribution in p, meaning that single errors are suppressed.

In summary, we have shown a rudimentary quantum error
correction circuit. We have executed a two-qubit phase flip code
and confirmed that by applying an echo pulse to the ancilla qubit
we can preserve the state of the data qubit. We have
demonstrated a resonant SWAP gate and have implemented a
Toffoli-like gate using CZ and CS−1 gates. Utilizing these gates has
allowed us to implement a three-qubit phase flip code. Though
scaling quantum dots in two dimensions and readout using Pauli
spin blockade are central aspects in virtually all semiconductor
qubit architectures60, we have also observed that they affect the
quantum gate compilation as well as the correction itself. Running
quantum error correction codes such as the surface code11 will
require significant advances. Both the quantity and the quality of
the qubits will need to increase. In particular, scaling the number
of qubits in two dimensions will require the development of
architectures. The qubit coherence is currently limited, but this
may be improved by several means. First, by using purified
germanium the hyperfine interaction can be avoided. Second,
sweet spots with respect to charge noise have recently been
proposed and observed for hole qubits61. Finally, tailored pulses
will need to be implemented to optimize the initialization, readout
and qubit operation. While formidable improvements will have to
be made to obtain fault-tolerant operation, we envision that the
capability to test tailored quantum algorithms in real devices will
serve as a crucial link in developing scalable quantum technology.

METHODS
The four-qubit quantum processor and methods to operate are
described in previous work26. Additional methods are detailed in the
Supplementary Information, which contains more information about
the latched PSB readout protocol (Supplementary Methods 1), details
on the calibration of the CZ and CS−1 gates (Supplementary
Methods 2), details on the calibration of the resonant SWAP gate
(Supplementary Methods 3), additional data on the two-qubit phase
flip code (Supplementary Fig. 4), data on the residual exchange
(Supplementary Fig. 5), additional data on the Toffoli-like gate
(Supplementary Discussion 1), simulation results of the phase flip
code with error Z(φ) (Supplementary Discussion 2), state probability
versus effective probability (Supplementary Discussion 3), and the
derivation of the fit function for the results of the three-qubit phase
flip (Supplementary Discussion 4).
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