ZEA-1 | ENGINEERING AND TECHNOLOGY

Technology for Excellent Science

JÜLICH Forschungszentrum

Time-of-Flight (ToF) measurements using a solid methane (CH₄) moderator

A. Schwab, 2nd JCNS-2 PhD days 2022

Motivation

High Brilliance Neutron Source (HBS):

- <u>Compact Accelerator-driven Neutron Source</u> (CANS)
- Production of free neutrons by (p,n)-reactions $(E \sim MeV)$
- Nano-scale measurements require long-wavelength neutrons ($\lambda > 10 \text{ Å}$)
- Optimization of moderators (geometry/temperature) to achieve high cold neutron brilliance

Cryostat assembly and operation

→ Nietai-sealed connectors induce large deformations and stresses

→ Transfer line (dis)assembly not possible without sensor and heater cabling

- → LHe cooling prone to oscillating behaviour
- → Impact of freezing rate on neutron spectrum not known
- → Temperature measurement at center of moderator vessel

Time-of-Flight measurements

- Detector assembly

 Neutron guide

 Thermal moderator

 Proton beam line
- Normalization to detector at therm. Moderator
- \rightarrow good agreement for similar T_{Mod}
- ³He detector efficiency
- Neutron transmission (VITESS)
- → proton current different for each one of the two measurement days, but changes are not proportional to neutron count
- → increase of cold neutrons, but only small changes and no observable formation or shift of cold peak with decreasing temperature