ﬂ Sensors

Article

HyScreen: A Ground-Based Imaging System for High-Resolution
Red and Far-Red Solar-Induced Chlorophyll Fluorescence

Huaiyue Peng *(0, Maria Pilar Cendrero-Mateo 2{7, Juliane Bendig !{*, Bastian Siegmann
, Kari Kataja 3, Onno Muller!

Caspar Kneer !

check for
updates

Citation: Peng, H.; Cendrero-Mateo,
M.P; Bendig, J.; Siegmann, B.;
Acebron, K.; Kneer, C.; Kataja, K.;
Muller, O.; Rascher, U. HyScreen: A
Ground-Based Imaging System for
High-Resolution Red and Far-Red
Solar-Induced Chlorophyll
Fluorescence. Sensors 2022, 22, 9443.
https://doi.org/10.3390/522239443

Academic Editor: Wenjiang Huang

Received: 18 October 2022
Accepted: 28 November 2022
Published: 2 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

11, Kelvin Acebron 10,

and Uwe Rascher!

Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jiilich GmbH,
52428 Jiilich, Germany

Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia,
46980 Paterna, Spain

Specim Spectral Imaging Ltd., 90590 Oulu, Finland

*  Correspondence: h.peng@fz-juelich.de; Tel.: +49-(0)-2461-61-4514

Abstract: Solar-induced chlorophyll fluorescence (SIF) is used as a proxy of photosynthetic efficiency.
However, interpreting top-of-canopy (TOC) SIF in relation to photosynthesis remains challenging due
to the distortion introduced by the canopy’s structural effects (i.e., fluorescence re-absorption, sunlit-
shaded leaves, etc.) and sun—canopy—sensor geometry (i.e., direct radiation infilling). Therefore,
ground-based, high-spatial-resolution data sets are needed to characterize the described effects
and to be able to downscale TOC SIF to the leafs where the photosynthetic processes are taking
place. We herein introduce HyScreen, a ground-based push-broom hyperspectral imaging system
designed to measure red (Fsgy) and far-red (Fzg0) SIF and vegetation indices from TOC with single-
leaf spatial resolution. This paper presents measurement protocols, the data processing chain and
a case study of SIF retrieval. Raw data from two imaging sensors were processed to top-of-canopy
radiance by dark-current correction, radiometric calibration, and empirical line correction. In the
next step, the improved Fraunhofer line descrimination (iFLD) and spectral-fitting method (SFM)
were used for SIF retrieval, and vegetation indices were calculated. With the developed protocol
and data processing chain, we estimated a signal-to-noise ratio (SNR) between 50 and 200 from
reference panels with reflectance from 5% to 95% and noise equivalent radiance (NER) of 0.04 (5%) to
0.18 (95%) mW m~2 sr~! nm ™. The results from the case study showed that non-vegetation targets

had SIF values close to 0 mW m 2 sr~!

nm~!, whereas vegetation targets had a mean Fggy of 1.13
and Fg of 1.96 mW m~2 st~! nm~! from the SFM method. HyScreen showed good performance
for SIF retrievals at both Fggy and Fygp; nevertheless, we recommend further adaptations to correct
for the effects of noise, varying illumination and sensor optics. In conclusion, due to its high spatial
resolution, Hyscreen is a promising tool for investigating the relationship between leafs and TOC SIF

as well as their relationship with plants” photosynthetic capacity.

Keywords: imaging spectroscopy; proximal sensing; hyperspectral; calibration; empirical line
method; red SIF

1. Introduction

In times of global climate change, quantifying photosynthetic traits efficiently and
non-invasively is a key to better understanding the spatio-temporal adaptation of plants’
primary metabolism and to thus improve the early detection of stress in order to sustainably
manage plant production [1,2]. To estimate plants’ photosynthesis, chlorophyll fluorescence
(ChlF) has been widely used because of its direct connection with the dynamic regulation
of photosynthesis at the photosystem level. When chlorophyll molecules are excited by
absorbed radiant fluxes, re-emitted fluorescence photons compete with photochemical
quenching and non-photochemical quenching energy dissipation (NPQ). These three de-
excitation processes are tightly interrelated and are also constantly adjusted under changing

Sensors 2022, 22, 9443. https://doi.org/10.3390/5s22239443

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s22239443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6323-1509
https://orcid.org/0000-0001-5887-7890
https://orcid.org/0000-0002-6454-5654
https://orcid.org/0000-0002-1232-7102
https://orcid.org/0000-0002-8523-0256
https://orcid.org/0000-0002-2570-7788
https://orcid.org/0000-0002-0473-5632
https://orcid.org/0000-0002-9993-4588
https://doi.org/10.3390/s22239443
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239443?type=check_update&version=2

Sensors 2022, 22,9443

20f19

environmental conditions and stress levels [3]. The ChIF emission of plants covers the
spectral range from 650-800 nm, which is characterized by two peaks, one in the red
region (around 685 nm) and the other in the far-red spectral region (around 740 nm), where
Photosystem I (PSI) mainly emits ChlF in the far-red range, and Photosystem II (PSII) emits
ChlF both in the red and far-red ranges [4].

Solar-induced chlorophyll fluorescence (SIF) can serve as a real-time proxy of photosyn-
thesis under natural illumination and can be applied on a larger scale in contrast to active
fluorescence measurement techniques [3,5]. However, measuring SIF is challenging, as the
relatively small signal is superimposed on the reflected radiance of plants [6]. Therefore, SIF
is commonly retrieved by taking advantage of solar or the Earth’s atmospheric absorption
bands where irradiance transmission through the atmosphere is low [7,8]. The typically
used spectral bands for SIF retrieval are the solar Fraunhofer lines (Fe (758.8 nm) and KI
(770.1 nm) [9]) or Earth’s atmosphere telluric oxygen absorption bands (OB (687-692 nm)
and O, A (759-770 nm)) because their strongest absorption features at 687 nm and 760 nm
are close to the SIF emission peaks. Therefore, red (Fyg7) and far-red (Fyep) emitted fluores-
cence can be retrieved at these two oxygen absorption bands. Since SIF only represents
a fraction of the radiance measured by a sensor, high signal-to-noise ratio (SNR) as well
as adequate measurement protocols and sensor calibration are required for reliable SIF
retrieval [8,10,11].

SIF can be sensed from ground-based instruments up to satellites, but there is still a
gap in understanding the downscaling of top-of-canopy (TOC) SIF to leaf-level SIF [6,12].
Canopy architecture influences how leaf-emitted SIF is scattered and re-absorbed in the
canopy and how absorbed photosynthetically active radiation (PAR) changes within the
canopy [13,14]. Furthermore, viewing geometry influences measured SIF [15]. Physically
based radiative transfer models can help with understanding these processes, but measured
data are mandatory to validate modeled results or as input data to parameterize mod-
els [16]. At the landscape level, airborne imaging spectrometers (e.g., HyPlant) [12,17] and
unmanned aerial vehicles (UAVs) equipped with point spectrometers [18,19] are essential
for bridging the SIF measurement from TOC to satellite. For the scaling gap between leaf
and TOC, existing proximal point spectroradiometer systems such as FloX [20] have limited
suitability when investigating canopy structures, as the signal is always an integration
of the field of view of the sensor. Additional information, such as fractional vegetation
cover, sunlit and shaded parts of the canopy, and leaf angles and orientations, can only
be investigated with imaging sensors. Some studies have successfully retrieved F74 from
imaging systems [14,21-23]. Their measurements showed spatial and temporal variation of
SIF responding to herbicide stress, canopy structure and absorbed photosynthetically active
radiation (APAR), corroborating the need of SIF high-spatial-resolution imagery to over-
come the challenge of linking TOC fluorescence with leaf-level photosynthetic efficiency,
as listed in [4]. However, ground measurements of red SIF (Fyg7) have been challenging
due to limited spectral resolutions and signal-to-noise ratios of previous imaging spec-
trometers. Nevertheless, to characterize the contributions of PSII and PSI to the total ChlF
emission and, consequently, to understand the dynamics of ChlF and photosynthesis, the
measurement of both Fggy and Fygp is mandatory [24-26].

In this study, we introduce the HyScreen imaging spectrometer system, which allows
the retrieval of red and far-red fluorescence at close canopy where single leaves can be
spatially resolved. HyScreen consists of two high-spatial- and high-spectral-resolution
imaging spectrometers. One allows the retrieval of F759 and Fggy, and the other is used
for calculating vegetation indices. This paper presents a detailed technical description of
HyScreen, introduces the data acquisition protocol and gives insights into the developed
processing chain. A case study with structurally simple samples is presented to illustrate
the performance of HyScreen. Finally, measurement uncertainties are discussed.
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2. Materials and Methods
2.1. Hyperspectral Sensors

The HyScreen system consists of two push-broom imaging spectrometers: the fluo-
rescence sensor (FLUO) and the visible and near-infrared sensor (VNIR). This system was
built and developed by Forschungszentrum Jiilich in cooperation with SPECIM (Spectral
Imaging Ltd., Ouluy, Finland) as part of the German Plant Phenotyping Network (DPPN).
Figure 1a shows the detailed components of the system. Both cameras are mounted side-
by-side on a scanning bar to create an overlapping field of view (FOV) and synchronous
movement. The system has a main, compact power and control unit (PCU), which is
connected to both the VNIR and FLUO sensors. In addition, each sensor has its own PCU
and corresponding data acquisition computer (DAC), which includes data acquisition
software. With this setup, the HyScreen system can be mounted on a scaffolding (Figure 1a)
or a mobile platform in the field (Figure 1b).

ik

Figure 1. Overview of the HyScreen system: (a) HyScreen mounted on a movable scaffolding with
components noted in numbers. Legend: 1. fluorescence sensor (FLUO), 2. visible and near-infrared
sensor (VNIR), 3. power and control units (PCUs) and data acquisition computers (DACs) of the two
sensors, 4. displays, and 5. linear axis. (b) HyScreen mounted on the mobile field phenotyping platform.

The main components of HyScreen are the imaging spectrometers. The VNIR module
has a high-speed complementary metal-oxide semiconductor (CMOS) sensor. It covers the
spectral range from 400 nm to 1000 nm with a mean spectral sampling interval of 0.78 nm
and a mean full width at half maximum (FWHM) of 3.21 nm. The FLUO module has a
scientific CMOS (sCMOS) detector. It covers the spectral range from 670 nm to 780 nm with
a mean spectral sampling interval of 0.055 nm and a mean FWHM of 0.31 nm. The detailed
characteristics of the two spectrometers are shown in Table 1.

2.2. Measurement Protocol

HyScreen can be used from two different measurement platforms: it can be installed
(i) on a scaffolding at a height of 1.4 m of FLUO and a fixed height of 1.2 m of VNIR above
ground (Figure 1a) or (ii) on a mobile gantry system for phenotyping, where the distance
between the sensors and the measurement object is adjustable from 1 m up to 3 m above
ground (Figure 1b). During measurement, the geometry of the sun, target and sensor have
to be considered to avoid shadows from the platform being cast on targets. The sensors are
mounted in nadir position and leveled. Spatial and spectral binning, frame rate, integration
time, scanning speed, dark-current measurements and measurement range are controlled
by the manufacturer’s proprietary software. Two sensors move simultaneously from the
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beginning of the linear axis to any point on the axis using a motor. Two images from FLUO
and VNIR with a shared field of view can be produced by scanning lines and moving the
sensors along the target. During data acquisition, the signal level is monitored by a live
view that can also display saturated pixels.

Table 1. Characteristics of the fluorescence sensor (FLUQO) and the visible and near-infrared sensor
(VNIR) imaging spectrometers of HyScreen. The VNIR module measures in the visible and near-
infrared spectral range, while the FLUO module, with its very-fine spectral resolution, only covers
the visible red and near-infrared spectral range and was specifically designed to retrieve SIF. FWHM
stands for full width at half maximum.

Sensor VNIR FLUO
Sensor type CMOS sCMOS !
Dynamic range (bit) 12 14
Spectral range (nm) 400.00-1000.00 669.68-780.22

Mean spectral sampling

. 0.79 0.06
interval (nm)
Mean spectral resolution
(FWHM) (nm) 3.21 0.31
Field of view (FOV) (°) 32.71 32.24
Spatial pixels 1312 1512
Standard measurement
setup 2
Spectral binning 2 2
Spectral sampling 1.46-1.61 0.10-0.12
interval (nm)
Spectral resolution
(FWHM) (nm) 2.42-4.35 0.36 at O, B/0.40 at O, A
Number of bands 384 1004
Spatial binning 2 4
Spatial pixels 656 378
Swath width of the sensor
mounted 1 m above 587 578
canopy (mm)
Frame rate (fps) 20 10
Exposure time range (ms) 0.1-50 0.1-100
Power consumption (W) 80 115
Input voltage (V) 12 12

1 sCMOS: scientific CMOS chip—chip technology that combines high signal-to-noise ratio, wide dynamic range
and fast frame rates with linear sensitivity. 2 To improve the SNR, the spatial and spectral binning of the VNIR
module are set to 2, while the binning of the FLUO module is set to 4 in the spatial dimension and 2 in the
spectral dimension.

Table 1 shows the standard measurement parameters, including the spatial and spec-
tral binning options. To improve the SNR, the spatial and spectral binnings of the VNIR
module are set to 2, while the binning of the FLUO module is set to 4 in the spatial dimen-
sion and to 2 in the spectral dimension. When measuring at a distance of 1 m between
targets and sensors, the spatial resolutions of the FLUO and VNIR pixels are 1.53 mm and
0.89 mm, respectively. The frame rates of the VNIR and FLUO modules are 20 and 10 frames
per second (fps), with maximum integration times of 50 and 100 ms, respectively. To ac-
quire square pixels, the scanning speed is determined by the sensor—target distance and the
acquisition frame rate. To focus the sensors, we use a sheet with black and white stripes
before measurement whenever adjusting the height of sensors. Additionally, 100 dark
frames are recorded by closing the electro-mechanical shutter before each measurement.
The average dark current is later subtracted from the raw data.

Solar downwelling radiance of HyScreen is derived by measuring calibrated Lamber-
tian diffuse reflectance reference panels made from Zenith Polymer® (SphereOptics GmbH,
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Herrsching, Germany) placed at the beginning of the scanning area. The reflectance of
the panels is chosen to be less than 50% to obtain the highest possible SNR of vegetation
objects. During data acquisition, the reference panels should be horizontally leveled in the
principal plane and kept free from shadows.

2.3. Case Studies
2.3.1. SNR and NER of Reflectance Panels

In order to determine the SNR and corresponding noise-equivalent-radiance (NER) of
HyScreen’s FLUO module, Lambertian reference panels with different reflectances were
recorded. We chose four 0.2 x 0.05 m panels with reflectances of around 5%, 20%, 50% and
95%. The scene was captured at Forschungszentrum Jiilich, Jilich, Germany (50.9097° N,
6.41279° W) on 23 April 2021 at 13:13 Coordinated Universal Time (UTC). ROIs with an
average size of 685 pixels were generated to calculate SNR and NER. Since SNR and NER
are slightly influenced by the across-track pixel position, the results were calculated as the
mean of SNR and NER of the across-track samples.

2.3.2. Experiment with Vegetation and Non-Vegetation Objects

To demonstrate the performance of HyScreen over various vegetation and non-
vegetation targets, one scene including several objects was captured at Forschungszentrum
Julich, Jilich, Germany (50.9097° N, 6.41279° W) on 1 April 2020 at 12:13 Coordinated
Universal Time (UTC) with sun zenith angle of 43.35°and sun azimuth angle of 192.12°.
On this day, the sun’s zenith angle at solar noon (11:38 UTC) was 43.93°. HyScreen was
mounted on the scaffolding shown in Figure 1a and placed on a flat lawn area facing
southeast with azimuth angle of 130°, avoiding shadows from surrounding objects. The
targets were placed on a leveled, black plastic tray. Two reference panels with 5 and 20%
reflectance, one big banana leaf, a sunlit weeping fig leaf, one pot of substrate, and a brick
were placed in the scene as ROlIs, as shown in Figure 2. The scanning direction of the
sensors was from left-to-right in this image, so the light came from the upper right with
an angle around 62°. The SNR and NER of the ROIs of two panels were calculated for
demonstrating the measurement quality of this scene, and the results are demonstrated in
Appendix A.

Figure 2. Vegetation and non-vegetation target ROIs used for the HyScreen case study. The 5 and 20%
reflectance panels were used for measuring downwelling radiance and empirical line correction. The
other targets were used to test the performance of HyScreen: banana leaf, weeping fig leaf, substrate,
and brick. The scanning direction along the track was from left-to-right, while spatial pixels across the
track are in the vertical direction. The sun zenith angle and azimuth angles were 43.35 and 192.12°,
respectively, (yellow arrows). The arrow in the bottom right corner is pointing north.

Standard measurement parameters, as shown in Table 1, were used during the scan.
Only the height of the sensors above the targets was slightly different compared to the
default settings. The FLUO and VNIR module were mounted at heights of 1.4 m and 1.2 m
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above the targets, respectively. The integration times were adjusted to the illumination
conditions on the measurement day. Data were processed according to the processing
chain described in Section 2.4. Regions of interest (ROIs) of the targets were extracted and
processed in MATLAB 2021a (The MathWorks, Inc., Natick, MA, USA) [27]. The SNRs and
NERs of the ROISs of the panels were calculated by the method in Section 2.4.5 using Python
3.8 [28]. To apply a correction with the empirical line method (ELM) Section 2.4.2, the

panels with 5 and 20% reflectance were used to determine the linear relationship between
T

reflectance and at-sensor radiance L, iensor-

2.4. Image Processing Chain

The HyScreen data processing chain consists of four clusters, as shown in Figure 3.
The first cluster summarizes how spectral and radiometric calibration files complement
the raw data consisting of the hyperspectral data cubes and header files. The second
cluster describes the transfer of raw hyperspectral image cubes recorded by the VNIR
and FLUO modules to TOC downwelling radiance, upwelling radiance and reflectance.
Self-developed software using MATLAB 2021a [27] is used for dark-current subtraction,
radiometric calibration and Empirical Line Method (ELM) correction [29], converting at-
sensor radiance into TOC radiance and reflectance values as seen in Sections 2.4.1 and 2.4.2.
The third cluster calculates vegetation indices from data recorded by the VNIR module
Section 2.4.3, while the fourth cluster includes SIF retrieval at 687 and 760 nm based on
the two methods: improved Fraunhofer line discrimination (iFLD) and the spectral fitting
method (SFM) Section 2.4.4.

HyScreen processing chain

Cluster Il - FLUO/VNIR:
From raw data to top-of-canopy
radiance and reflectance

Cluster | - FLUO/VNIR sensor

-

FLUO/VNIR Raw data

sensor

Header files Dark current subtraction

Header information

Central wavelength & FWHM
Instrument .

Calibration Radiometric __:‘ Radiometric calibration ’

I

calibration coefficients
‘ At-sensor radiance of image

-

Legend
Data transfer l
(Input/Output) Self-developed » - -
software Reflectivity Radiance correction
w of reference (Empirical line method)
panels
.Sensor cgl. External l
information inputs Top-of-canopy downwelling and
- upwelling radiance and reflectance

[ Calculation of vegetation ]
indices

Vegetation
index images

Cluster 11l = VNIR: Cluster IV - FLUO:
Vegetation indices SIF retrieval

Improved Fraunhofer Line || Spectral Fitting Method
Discrimination (iFLD SFM

SIF images
760 nm
687 nm

SIF images
760 nm
687 nm

Figure 3. Flowchart of the HyScreen processing chain consisting of the fluorescence sensor (FLUO)
and the visible and near-infrared sensor (VNIR) modules divided into four clusters: (I) raw data
preparation, (I) from raw data to top-of-canopy downwelling and upwelling radiance and apparent
reflectance, (III) vegetation indices and (IV) solar-induced chlorophyll fluorescence (SIF) retrieval.
Spatial resolution is represented by full width at half maximum (FWHM).
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2.4.1. Raw Data to At-Sensor Radiance

To convert digital numbers from raw data to at-sensor radiance, dark-current frames
are averaged and then subtracted from the raw data, normalized by integration time and
multiplied by radiometric calibration coefficients. This step is described in Equation (1),

Rawpn (A) — Rawpc (M)
th-sensor(A) = IT coef frad(A), D
where the 1 stands for upwelling signals, Rawpy are digital numbers of the raw data cube,
Rawpc is dark current, IT (ms) is integration time, coef f,,q4 are radiometric coefficients,
th_sensor is at-sensor radiance in the unit of mW m~2 sr~! nm~!, and A indicates the
corresponding wavelength. The radiometric calibration coefficients provided by the sensor

manufacturer are pixel- and wavelength-dependent.

2.4.2. Empirical Line Method for Radiance and Apparent Reflectance

The sensor radiometric and spectral calibrations as well as the optical characterization
(i.e., non-linearity and point-spread function) uncertainties introduce distortion between
the at-sensor radiance and the TOC radiance. Here, we call the difference ’offset radiance’.
Darker targets and the oxygen absorption bands suffer more from this offset than brighter
targets and bands outside the absorption features because the ratio of offset-to-radiance,
i.e., the SNR, is relatively higher [30,31].

In this study, we apply the empirical line method (ELM) to convert at-sensor radiance

(th_sensor) to TOC radiance (L¥oc)' and here, we call it ‘radiance correction’. At least two
reference panels with known reflectance (R) have to be used to establish a linear relationship
to the at-sensor radiance from HyScreen. Calibration of these reference panels has to be
done in the laboratory. In the at-sensor radiance image, ROIs covering the reference panels
are selected to determine their averages and standard deviations. Based on the known
reflectance and the measured at-sensor radiance of the reference panels, a linear relationship

can be determined for each wavelength. The intercept on the y-axis showing at-sensor
radiance indicates the offset (LZffs ) caused by the different artifacts mentioned above in
the measurements. This offset has to be subtracted from at-sensor radiance to obtain TOC
radiance, which makes the fitting line run through the axis origin. TOC downwelling
radiance (L%OC) can then be described as TOC upwelling radiance (L}OC) when reflectance
equals one. Finally, apparent reflectance (Rapp) can be calculated according to Equation (2).

Lioc(A)
(A = 1o\t
) )

In Figure 4a, we can observe the upwelling radiance offset from 670 to 780 nm derived
with the ELM from the 5% and 20% panels in Figure 2. Due to the low downwelling radiance
in the oxygen absorption features, the offsets within the OA (1 mW m~2 sr~! nm~!) and
02B (1.5 mW m~2 sr~! nm~!) bands are distinctly smaller in comparison to the wave-
lengths located on the shoulders of both absorption features. Consequently, the ratio
of offset-to-downwelling radiance differs within and outside the absorption wavebands,
which leads to an infilling feature similar to SIF, as shown in Figure 4b. We can observe
that the infilling at Oy A is larger than at O,B. The offset can lead to around 0.50 and
0.36 mW m~2 sr~! nm~! error in SIF retrieval, respectively. Thus, considering the current
optical characterization of the system, the ELM correction of the offset radiance is significant
for SIF retrieval.

()

2.4.3. Vegetation Indices

Vegetation indices (VIs) are calculated from TOC reflectance image data collected with
the VNIR module. Three indices used in the case study presented in Section 2.3.2 are listed
in Table 2: the normalized difference vegetation index (NDVI), which is sensitive to the
amount of green vegetation biomass and related to the leaf area index (LAI); the transformed
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chlorophyll absorption in reflectance index (TCARI), which is inversely correlated to leaf
chlorophyll content; and the photochemical reflectance index (PRI), which is an indicator
of the state of the xanthophyll cycle and is thus inversely correlated with NPQ.

(a)

3_ T T T T T T ]
2.5 -
)
e
© 2r B
8
© 1.5+ —
k]
ool i
G
0.5F -
0 1 1 1 1 1 1
660 680 700 720 740 760 780 800
§ (b)
.© 0.025 T T T T T T
©
e
8 0.02F .
E
£ 0.015 .
=
[e]
© 0.01fF i
o)
(@]
C
% 0.005F -
©
- O 1 1 1 | | |
§ 660 680 700 720 740 760 780 800
G Wavelength [nm]

Figure 4. (a) Offset of at-sensor upwelling radiance across the FLUO module’s spectral range
calculated with the empirical line method (ELM) described in Section 2.4.2. Each value corresponds
to the intercept from the linear equation fitted to the 5 and 20% reference panels. (b) ratio of offset
radiance to downwelling radiance.

Table 2. Vegetation indices calculated from TOC reflectance data recorded with the HyScreen VNIR
module: normalized difference vegetation index (NDVI), transformed chlorophyll absorption in
reflectance index (TCARI) and photochemical reflectance index (PRI). All indices are calculated from
averaged reflectance (R) values of small spectral windows located around a central wavelength (nm),
which is stated in subscript.

Index Equation Reference
Rgopa—R
NDVI B tn (52
TCARI 3[(R700:4 — Re70:+4) — 0.2(Rygo:£4 — Rssora)] g2t [33]
PRI Rs31425—Rs70425 [34]

Rs31425+R570425

2.4.4. Solar-Induced Chlorophyll Fluorescence Retrieval

Due to the high spectral resolution of the HyScreen FLUO module, the fluorescence
emitted at both F74p and Fygy is retrieved. In this study, the improved Fraunhofer line
discrimination (iFLD) method [35] and the spectral fitting method (SFM) [36] were imple-
mented to retrieve SIF from the HyScreen FLUO module. Both methods are widely used
by the scientific community for the retrieval of SIF. Detailed descriptions and a comparison
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of the two methods is provided by [8]. Table 3 summarizes how the iFLD and SFM were
implemented in the HyScreem processing chain.

Table 3. Description of the parameters, wavelength ranges, wavelength intervals (WI) and interpo-
lation/model functions used in this study for the iFLD and SFM retrieval methods. Downwelling
radiance (LV), reflectance (R), fluorescence (F), absorption feature (Abs. feature), lower boundary (Ib)
and upper boundary (ub) are shown in the table. Gaussian function parameters are: g, the height of
the red and far-red fluorescence curve peaks; c, the center of fluorescence peaks; and b, the widths of
the red and far-red fluorescence spectra.

iFLD
Method L+ and R Interpolation WI  Abs. Feature WI Interpolation Method
L. i
0,A 750-780 nm 759.3-768.0 nm L*: polynomial 2nd grade
R: linear smoothing spline
X i
0,B 665-716 nm 683.3-696.9 nm L™ polynomial 2nd grade
R: cubic smoothing spline
SFM

Method  F and R Interpolation WI ~ Abs. Feature WI =~ Model function

Gaussian function parameters

a c b

24
0 A 750-780 nm 759.3-768.0 nm iFLD retrieved 740nm  ub = +Inf
F: Gaussian fluorescence Ib = —Inf

R: Cubicspline ub=15,1b=0 8
O,B 684-700 nm 686.5-690.0 nm 680 nm  ub = +Inf
Ib = —Inf

2.4.5. SNR and NER Calculation

As SNR is crucial for assessing the sensor’s suitability to retrieve SIF, in this section,
we present the methods used to estimate SNR and NER. For a specific ROI, according
to [37], SNR is calculated for each wavelength using Equation (3).

SNR(A) = Ifl(();\))
_ Rawgoi(A)
stdror(A)
_ Rawpn(A) — Rawpc(A)
 [std?(Rawpn (A)) + std?(Rawpe(A))]1/2

®)

where S and N represent signal and noise, respectively, and Rawgoy and stdroy stand for
the mean and standard deviation of the pixel signals covered by the ROI, respectively.
The mean of the pixel signals is calculated from raw data Rawpy from which the dark
current Rawpc has additionally been subtracted. The noise corresponds to the standard
deviation of the signal and is determined as the square root of the sum of the raw data
variance std?(Rawpy) and dark-current variance std?(Rawpc). When calculating NER, the
SNR needs to be set to 1 so that the signal is equal to the noise. With this, the so-called
noise-equivalent signal (NES) can be calculated using Equation (4).

NES(A) = [std?(Rawpy (7)) + std*(Rawpc (A))] V2, (4)
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Finally, the NER can be determined by multiplying the NES with the radiometric
calibration coefficients and normalized by integration time (IT), as shown in Equation (5).

NER() = MM coefp (1) ©)

3. Results
3.1. Results of SNR and NER of Reflectance Panels

The results of each reference panel are shown in Figure 5. We can observe that the SNR
and NER increase with increasing reflectance of panels in Figure 5a,b. For the 5% reference
panel, the SNR was close to 75 across wavelengths; regarding the 20%, 50% and 95% panels,
the SNR increased up to around 100, 150 and 200, respectively. Since the downwelling radi-
ance within the O, absorption band was much lower compared to the rest of the covered
spectral range, the SNR and NER of each reference panel at Oy A and O, B were distinctly
lower. The reference panels with 95, 50, 20 and 5% had NERs of 0.028, 0.021, 0.013 and
0.008 mW m~2 sr~! nm~!, respectively, at 760.48 nm, and 0.105, 0.077, 0.048 and
0.023 mW m~2 sr~! nm~!, respectively, at 687.04 nm. The NERs indicate that darker
panels show relatively more noise than brighter panels and thus may introduce higher
uncertainty in the SIF retrieval.

200

x 150
z
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o
-
[&)]

o
.
o

NER [mWm~2sr-'nm~1]

o
o
a

0.00
680 700 720 740 760 780
Wavelength [nm]
Figure 5. Signal-to-noise ratio (SNR) and noise-equivalent-radiance (NER) of HyScreen’s FLUO
module from 670-780 nm derived from Lambertian reference panels with reflectances of 5% (red),
20% (green), 50% (orange) and 95% (blue): (a) provides information on the SNR, and (b) shows the
NERs of four Lambertian reference panels. The solid lines represent mean values of SNR or NER
of across-track samples from regions of interest (ROIs), and the light-colored areas illustrate their
corresponding standard deviations.
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3.2. Results of the Experiment with Vegetation and Non-Vegetation Objects
3.2.1. Radiance and Apparent Reflectance Spectra

The FLUO module and VNIR are slightly different but complement each other for
vegetation monitoring. Figure 6 shows the radiance spectra and corresponding standard
deviations of the ROISs of each target shown in Figure 2. The radiance spectra of the FLUO
module (Figure 6b) are slightly lower than those measured with the VNIR module (a). For
example, upwelling radiance of the banana leaf at 750 nm recorded with the VNIR module
is 12.07 mW m~2 sr~! nm~! higher than that of the FLUO module, which corresponds
to a 8.93% difference between both modules. In contrast, apparent reflectance is only 1%
higher, representing a 2.28% difference, as shown in Figure 7. Meanwhile, VNIR and FLUO
both show typical vegetation spectral patterns from banana and weeping fig leave, where
green and infrared wavelengths are reflected stronger than those in the red range. The
FLUO module has a deeper radiance signature and a sharper apparent reflectance signature
than the VNIR module at O, B and O, A, which indicates the FLUO module can be used
for SIF retrieval and VNIR can be used for vegetation traits retrieval due to its wider
wavelength range. Between the ROIs, the banana leaf, weeping fig leaf and substrate are
more heterogeneous than the brick and panels, as represented by their standard deviations.

(a)

200 T T T T
150+ -
100
T 50
€
c
‘TL 0 I 1 | 1 |
q‘m 400 500 600 700 800 900 1000
g
z
> (b)
v 200 T T T T T T T T | |
< 5% panel Weeping fig leaf
S 20% panel Substrate
&2 150+ Banana leaf Brick -
100 -

50

0 | | | | | | 1 1 |
670 680 690 700 710 720 730 740 750 760 770 780
Wavelength [nm]

Figure 6. Means and standard deviations of top-of-canopy (TOC) upwelling radiance of differ-
ent vegetation and artificial targets recorded by the HyScreen (a) VNIR and (b) FLUO modules.
(a,b) share the same color legend shown in (b). The colored lines represent averaged spectra of all pixels
of a target covered by an ROI, while the shaded areas represent corresponding standard derivations.
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Figure 7. Means and standard deviations of top-of-canopy (TOC) apparent reflectance of different
vegetation and artificial targets recorded by the HyScreen (a) VNIR and (b) FLUO modules. The
colored lines represent averaged spectra of all pixels of a target covered by an ROI, while the shaded
areas represent corresponding standard derivations.

3.2.2. Vegetation Indices and SIF

Figure 8 shows a true-color composite and VI images calculated according to the
equations in Table 2 as well as SIF images retrieved based on the two methods de-
scribed in Section 2.4.4. The means and standard deviations of VIs and SIFs are shown
in Tables 4 and 5. The composition of the scene and spatial variations can be observed
from both VI and SIF images. Observing the patterns within ROIs from vegetation targets,
NDVI and PRI decrease from the banana leaf to the green area of the weeping fig and to
the chlorophyll-deficient area of the weeping fig, which is inverse to the pattern of TCARL.
In the NDVI image, vegetation, including sunlit and shaded parts, can be distinguished
easily, but TCARI, PRI and SIF show values clearly different between sunlit and shaded
parts. The NDVI image (b) shows a clear separation between vegetation (>0.4) and non-
vegetation targets (<0.4). Most non-vegetation areas, such as the brick, have averaged
NDVI values around 0. Only the shaded areas at the edges of the targets exhibit some
artifacts. The substrate consisting of peat shows higher average values (0.32) and standard
deviation (0.04) compared to the brick (—0.01 and 0.01, respectively), which is probably
due to the remaining plant material reflecting relatively more in the near-infrared than red
wavelength [38] and its spatial heterogeneity. In the TCARI image (c), we can distinguish
vegetation and non-vegetation easily by a threshold of 0.07, except for the shaded area of
the banana leaf, where TCARI has an average value of 0.01. In the PRI image (d), only the
vegetation targets typically show reliable PRI values with meaningful information related
to NPQ. Interestingly, all three vegetation indices and SIF show differences within the
weeping fig leaf according to the differing chlorophyll concentration.
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(a) RGB image (b) NDVI (c) TCARI (d) PRI
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Figure 8. Images of vegetation indices and SIFs at 687 nm and 760 nm: (a) true-color composite
image of the measured targets; (b) normalized difference vegetation index (NDVI), highlighting
the vegetation part; (c) transformed chlorophyll absorption in reflectance index (TCARI), indicating
chlorophyll concentration; (d) photochemical reflectance index (PRI) image related to xanthophyll
cycle of the NPQ process; (e-h) retrieved SIF images at 760 nm and 687 nm, respectively, from SFM
and iFLD. The ROI of the weeping fig leaf is labeled by a red rectangle.

Table 4. Means and standard deviations of the vegetation indices NDVI, TCARI and PRI for the ROIs
of the the different targets shown in Figure 2.

ROIs NDVI TCARI PRI

Mean Std. Mean Std. Mean Std.
Banana 0.89 0.02 0.12 0.01 0.05 0.01
Weeping fig 0.72 0.05 0.30 0.04 0.01 0.01
Substrate 0.32 0.04 0.00 0.00 —0.13 0.04
Brick —0.01 0.01 —-0.01 0.01 —0.03 0.01

Table 5 shows means and standard deviations of the SIF images calculated for the
different ROIs. Results from the SFM method are consistent with those of the iFLD method,
showing similar means and standard deviations of SIFs for each of the ROIs. Regarding
the mean values of Fggy and F749, SFM has relatively lower values from vegetation targets
and values closer to zero from non-vegetation targets compared to the iFLD method, but
SEM also seems more heterogeneous than iFLD. For all ROls, Fy4 is higher and less noisy
than Fygy, except for the banana leaf, where std of Fyg is higher than for Fsgy. The patterns
of images of Fsgy and Fyg are different from each other, and both differ from the pattern
observed in the vegetation indices. The banana leaf has lower F74 than the green area of
the weeping fig but higher F74g than the chlorophyll-deficient area. However, the banana
leaf has the lowest Fygy compared to the entire area of the weeping fig leaf. Looking at
the SIF images, the banana leaf F75) shows a stronger spatial variation across the leaf
compared to Fggy. Using the SFM result images as examples, the bottom-right part of the
banana leaf shows clearly higher Fy¢y than other parts, which is consistent with the specular
reflection visible in the RGB image. Sunlit parts have higher values than shaded parts. The
shaded part of the banana leaf shows Fsg; and Fzgg of 0.1 and 0.67 mW m~2 sr~! nm™~!,
respectively, which are much lower compared to the sunlit part of the leaf (1.13 and
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1.96 mW m~2 sr—! nm~!, respectively). The weeping fig leaf has the highest SIF values and
standard deviations compared to other ROIs due to its uneven distribution of chlorophyll.
The weeping fig leaf with differing chlorophyll content can be distinguished both in Fggy
and Fyg. Although non-vegetation targets should have zero SIF, the results are negative for
Fgs7 and close to zero for Fyg.

Table 5. Means and standard deviations of Fsgy and Frgy in mW m~2 sr~! nm~! derived with the
iFLD and SFM SIF retrieval methods for the ROIs of the different targets shown in Figure 2.

ROIs iFLD687 iFLD760 SFM687 SFM760
Mean Std. Mean Std. Mean Std. Mean Std.
Banana 1.44 027 259 042 113 0.26 196 0.59
Weeping fig 490 1.63 517 0.96 424 176 462 091
Substrate —-0.14 0.55 0.19 0.15 —0.05 043 0.07 0.11
Brick —-0.69 095 —-0.18 0.16 -037 074 -011 0.14

4. Discussion

In this manuscript, HyScreen, the first imaging system capable of retrieving fluores-
cence in the red and far-red at ground level is introduced to the scientific community. In this
section, we first evaluate the suitability of Hyscreen to accurately retrieve SIF based on SNR
and NER system characterization. Secondly, based on the results of this study, HyScreen opti-
cal and radiometric characterization and data processing are discussed. Finally, the retrieved
SIF and vegetation trait spatial patterns observed in this study are interpreted, showing the
potential of Hyscreen to close the gap between canopy and leaf-level measurements.

4.1. SNR and NER Characterization

For SIF measurements, the signal-to-noise ratio (SNR) and spectral resolution are the
most important parameters. They can even account for up to 40% error of the SIF retrieval
accuracy [39]. The NER results from Section 3.1 indicated that darker panels show relatively
more noise than brighter panels and thus may introduce higher uncertainty in the SIF
retrieval. Considering a typical vegetation target with 50% reflectance at O, A, the relative
error of SIF caused by noise would have a range from 0.42% to 1.05% when true SIF has
values between 2 and 5 mW m~2 sr~! nm™~!. For vegetation with only 5% reflectance at
O3B, the relative error would be in the range from 0.46 to 1.15% when Fggy is in the range
of 2to 5mW m~2 sr~! nm~L. The results are consistent with the definition of SNR, where
SNR depends on signal amplitude. For most modern spectroradiometers, the majority
of noise is photon noise, which is caused by the inherent random number of captured
photons forming a Poisson distribution. The higher the expected hits of photons within
the integration time, the higher the ratio of the expected value to the standard deviation
of hits is, and thus the higher SNR is [30]. Thus, to optimize SNR, the key is to increase
signal and reduce noise. Firstly, measurements should be carried out under high intensity
of illumination, such as clear sky conditions and sun zenith angles lower than 60° [40].
In addition, spatial and spectral binning reduces noise by averaging values of several
pixels [21]. Moreover, the integration time has to be optimized to cover 3/4 of the sensors’
dynamic ranges to achieve an optimal SNR [11]. According to the knowledge above, we
recommend using reference panels with reflectance not higher than that of the vegetation;
thus, the SNR from the vegetation can be optimized by improving integration time without
saturation from non-vegetation targets.

4.2. Processing Chain Improvements

Based on the results from the case study, we identified some possible improvements
for data collection as well as additional correction of sensor characteristics that could be
included in the processing chain. When observing the image of Fz5, we see a vertical
heterogeneous distribution of SIF on the banana leaf (Figure 8). In the current processing
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chain, the downwelling radiance is interpolated from the radiance of ROIs of two reference
panels by ELM. In the future, the ELM correction should be spatial pixel-dependent using
at least two reference panels covering the entire swath across track.

In addition, the ELM approach is based on the assumption that reflectance is linearly
related to upwelling radiance. Non-linearity is a known effect in spectroradiometers:
meaning an increasing number of photons does not mean the same proportional increase
of digital numbers captured by the detector [37,41]. However, non-linearity is strongest
at the low and high ends of the dynamic range of the detector. In the measurement
protocol, the integration time is optimized for the scene. Therefore, non-linearity effects
should be minimized. Nevertheless, non-linearity correction will be implemented in the
processing chain. Further improvement could be the implementation of a correction of
stray light in the sensor, described as the point spread function (PSF), such as has been
suggested by Albert et al. [42] using a monochromatic laser or Scharr et al. [43] using a
double monochromator.

4.3. Spatial Distribution of Vegetation Indices and SIF

HyScreen provides us great opportunities for studying SIF distribution originating
from biophysical (e.g., leaf structure and optical) and biochemical properties (pigments)
of plants. Chlorophyll content and photosynthetic efficiency may explain the variation
of SIF across vegetation ROIs. Within the weeping fig leaf, the patterns of Fsg7 and Fyg
are quite similar, but Fggy is slightly higher than Fzg in the chlorophyll-deficient area. We
hypothesize that the lack of linear electron transport from the chlorophyll-deficient area
may result in low PSII efficiency and thus high Fgg7 [44,45]. However, further analysis is
needed to support this hypothesis, which is out of the scope of this study. Taking the banana
leaf into consideration, its lower Fsg; compared to that of the weeping fig leaf is probably
caused by its high chlorophyll content, indicated by TCARI, and consequently, stronger
re-absorption of Fggy. The lower Fygp from the banana leaf compared to the green area of
the weeping fig may be due to higher photosynthetic efficiency or because the weeping fig
leaf is lying on top of the banana leaf, which may cause some added background signal.

Fy¢0 suffers more strongly from directional scattering than F687 [13]. Furthermore,
the effect of the bidirectional reflectance distribution function (BRDF) of the target (leaf) is
visible in F760 (Figure 8). This effect is combined with the slightly changing sensor viewing
direction, which is nadir in the center of the scanning line and 16°at the edges of each
scanned line, according to the FLUO sensor’s field of view (Table 1). The combination of
sun zenith and azimuth angles (Figure 2) and sensor viewing direction likely explain the
heterogeneous nature of Fy4.

With the very detailed spatial information of SIF and vegetation indices, it is possible
to investigate how illumination, plant structure and plant physiology interact. For example,
it will be interesting to investigate how efficiently plants absorb diffuse light for photosyn-
thesis and how SIF changes accordingly. In this case study, the shaded vegetation parts have
lower SIF than the sunlit parts when assuming the same downwelling radiance calculated
from sunlit reference panels. The SIF in shaded areas was not further analyzed due to their
unknown downwelling radiance and relatively lower SNR compared to the sunlit areas
of the scene. However, this very high spatial resolution information is a clear advantage
compared to point spectrometers. It enables investigating the ratio of sunlit-to-shaded
areas in a scene, and thus, we can correct or remove the shaded parts when calculating SIF
from the whole scene.

HyScreen is unique for its high spatial and spectral resolution, capturing both red and
far-red SIF and vegetation trait distributions within a scene. Firstly, HyScreen can provide
valuable ground measurements that can be used for parameterizing advanced radiative
transfer models such as DART [46] and SCOPE [47] for researching the interaction among
illumination, canopy structure and viewing angle. Pinto et al. [21] did the pioneering work
investigating the leaf angle and orientation effects on Fy4 of sunlit leaves of sugar beets.
With HyScreen, we can even go further by evaluating the effects of varying APAR and
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re-absorption of SIF when combining measurements of canopy structure. The combination
of Fgg7 and Fyg is unique for studying the relationship between SIF and photosynthesis,
as demonstrated by the work on Arabidopsis by Acebron et al. [48]. With the help of the
spatial distribution of SIF retrieved from HyScreen, there is the chance to separate the
effects on SIF from leaf angles, leaf orientations and leaf age from physiological effects.
Even the energy distribution between PSI and PSII can be investigated [4,49].

5. Conclusions

This study aimed to introduce the advanced imaging spectrometer HyScreen for SIF
retrieval and demonstrated the measurement protocol and processing chain of both red
and far-red SIF. We analyzed the spatial distribution of SIF of simple vegetation targets
with differing biochemical properties (chlorophyll content). Uncertainties of SIF from noise,
illumination and sensor optics were discussed, and potential corresponding solutions
were provided. This study established a framework for SIF retrieval with millimeter-level
spatial resolution for the first time for both red and far-red SIF. HyScreen is a valuable
addition to proximal sensing of SIF, which can, together with other sensors, be used for
investigating SIF propagation from leaf and canopy and the energy distribution between
photosynthesises, SIF and NPQ as well as exploiting PRI dynamics.
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Appendix A. SNR and NER of Two Reference Panels

Figure A1 shows the SNRs and NERs of the two reference panels labeled in Figure 2. At
760.48 nm, the panels with 20 and 5% reflectance had SNRs of 40.90 and 27.44, respectively,
and NERs of 0.015 and 0.008 mW m~2 sr~! nm ™!, respectively. At 687.04 nm, 20 and 5%
panels had SNRs of 72.44 and 45.21, respectively, and NERs of 0.05 and 0.025, respectively.
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Despite the NERs being quite similar to those in Section 3.1, the SNRs were lower than that
scene, especially at Oy A.

80
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Figure Al. Signal-to-noise ratios (SNRs) and noise-equivalent-radiances (NERs) of HyScreen’s
fluorescence sensor (FLUO) module from 670-780 nm derived from Lambertian reference panels
with 5% and 20% reflectance: (a) provides information on the SNRs, and (b) shows the NERs of
two Lambertian reference panels. The solid lines represent mean values of SNRs or NERs of across-
track samples, which are from regions of interest (ROIs), and the light-colored areas illustrate their
corresponding standard deviations.
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