000912468 001__ 912468
000912468 005__ 20240711085613.0
000912468 0247_ $$2doi$$a10.1016/j.scriptamat.2022.115169
000912468 0247_ $$2ISSN$$a1359-6462
000912468 0247_ $$2ISSN$$a1872-8456
000912468 0247_ $$2Handle$$a2128/33661
000912468 0247_ $$2WOS$$aWOS:000902223100002
000912468 037__ $$aFZJ-2022-05647
000912468 082__ $$a670
000912468 1001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b0$$eCorresponding author$$ufzj
000912468 245__ $$aMetastable to stable phase transformation in atmospheric plasma sprayed Yb-silicate coating during post-heat treatment
000912468 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
000912468 3367_ $$2DRIVER$$aarticle
000912468 3367_ $$2DataCite$$aOutput Types/Journal article
000912468 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673957663_28073
000912468 3367_ $$2BibTeX$$aARTICLE
000912468 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912468 3367_ $$00$$2EndNote$$aJournal Article
000912468 520__ $$aYb-silicate is used as volatilization barrier material in environmental barrier coating applications. In this study, metastable to stable phase transformation in highly amorphous atmospheric plasma sprayed Yb-silicate coating was investigated during post-heat treatment. High-temperature X-ray diffraction (HT-XRD) was used to analyze the phase composition of the coating at elevated temperatures. Three metastable phases (Yb2Si2O7 (P-1), Yb2SiO5 (P21/c), Yb4.67Si3O13 (P63/m)) and two stable phases (Yb2Si2O7 (C2/m), Yb2SiO5 (I2/a)) preferentially crystallized from the amorphous coating starting at 1000 °C. Metastable phases transformed into stable Yb2Si2O7 and Yb2SiO5 at higher temperatures. HT-XRD data were used to estimate the volume expansion in the coating due to the phase transformation and the results were compared to the dilatometry measurements. The estimated expansion from HT-XRD data was larger than the measured expansion in dilatometry. Microstructural investigation revealed crack healing in the coating during the measurements which was associated with the lower expansion measured in dilatometry
000912468 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000912468 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912468 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b1$$ufzj
000912468 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b2$$ufzj
000912468 773__ $$0PERI:(DE-600)2015843-9$$a10.1016/j.scriptamat.2022.115169$$gVol. 225, p. 115169 -$$p115169 -$$tScripta materialia$$v225$$x1359-6462$$y2023
000912468 8564_ $$uhttps://juser.fz-juelich.de/record/912468/files/publishers%20version_Bakan_2022_Scripta-1.pdf$$yRestricted
000912468 8564_ $$uhttps://juser.fz-juelich.de/record/912468/files/post%20referee%20draft_Bakan_2022_Scripta.pdf$$yPublished on 2022-11-16. Available in OpenAccess from 2024-11-16.
000912468 909CO $$ooai:juser.fz-juelich.de:912468$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000912468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b0$$kFZJ
000912468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b1$$kFZJ
000912468 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000912468 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000912468 9141_ $$y2023
000912468 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000912468 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912468 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000912468 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000912468 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCRIPTA MATER : 2022$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
000912468 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCRIPTA MATER : 2022$$d2023-08-24
000912468 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000912468 9801_ $$aFullTexts
000912468 980__ $$ajournal
000912468 980__ $$aVDB
000912468 980__ $$aUNRESTRICTED
000912468 980__ $$aI:(DE-Juel1)IEK-1-20101013
000912468 981__ $$aI:(DE-Juel1)IMD-2-20101013