001     912468
005     20240711085613.0
024 7 _ |a 10.1016/j.scriptamat.2022.115169
|2 doi
024 7 _ |a 1359-6462
|2 ISSN
024 7 _ |a 1872-8456
|2 ISSN
024 7 _ |a 2128/33661
|2 Handle
024 7 _ |a WOS:000902223100002
|2 WOS
037 _ _ |a FZJ-2022-05647
082 _ _ |a 670
100 1 _ |a Bakan, Emine
|0 P:(DE-Juel1)136812
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Metastable to stable phase transformation in atmospheric plasma sprayed Yb-silicate coating during post-heat treatment
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673957663_28073
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Yb-silicate is used as volatilization barrier material in environmental barrier coating applications. In this study, metastable to stable phase transformation in highly amorphous atmospheric plasma sprayed Yb-silicate coating was investigated during post-heat treatment. High-temperature X-ray diffraction (HT-XRD) was used to analyze the phase composition of the coating at elevated temperatures. Three metastable phases (Yb2Si2O7 (P-1), Yb2SiO5 (P21/c), Yb4.67Si3O13 (P63/m)) and two stable phases (Yb2Si2O7 (C2/m), Yb2SiO5 (I2/a)) preferentially crystallized from the amorphous coating starting at 1000 °C. Metastable phases transformed into stable Yb2Si2O7 and Yb2SiO5 at higher temperatures. HT-XRD data were used to estimate the volume expansion in the coating due to the phase transformation and the results were compared to the dilatometry measurements. The estimated expansion from HT-XRD data was larger than the measured expansion in dilatometry. Microstructural investigation revealed crack healing in the coating during the measurements which was associated with the lower expansion measured in dilatometry
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 1
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 2
|u fzj
773 _ _ |a 10.1016/j.scriptamat.2022.115169
|g Vol. 225, p. 115169 -
|0 PERI:(DE-600)2015843-9
|p 115169 -
|t Scripta materialia
|v 225
|y 2023
|x 1359-6462
856 4 _ |u https://juser.fz-juelich.de/record/912468/files/publishers%20version_Bakan_2022_Scripta-1.pdf
|y Restricted
856 4 _ |y Published on 2022-11-16. Available in OpenAccess from 2024-11-16.
|u https://juser.fz-juelich.de/record/912468/files/post%20referee%20draft_Bakan_2022_Scripta.pdf
909 C O |o oai:juser.fz-juelich.de:912468
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136812
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCRIPTA MATER : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCRIPTA MATER : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21