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Abstract: On 15 January 2022, the Hunga Tonga-Hunga Ha’apai (HTHH) (175.38◦ W, 20.54◦ S)
volcano erupted explosively. It is considered the most explosive volcanic eruption during the past
140 years. The HTHH volcanic eruption caused intense ripples, Lamb waves, and gravity waves in
the atmosphere which encircled the globe several times, as reported by different studies. In this study,
using OMI, SAGE-III/ISS, and CALIPSO satellite observations, we investigated the spread of the
volcanic SO2 cloud due to the HTHH eruption and subsequent formation of sulfuric acid clouds in
the stratosphere. It took about 19–21 days for the stratospheric SO2 injections of the HTHH to encircle
the globe longitudinally due to a dominant westward jet with wind speeds of ~2500 km/day, and it
slowly dispersed over the whole globe within several months due to poleward spread. The formation
of sulfuric acid clouds intensified after about a month, causing the more frequent occurrence of
high aerosol optical depth elevated layers in the stratosphere at an altitude of about 20–26 km. This
study deals with the dynamics of volcanic plume spread in the stratosphere, knowledge of which is
essential in estimating the accurate radiative effects caused by perturbations in the earth–atmosphere
system due to a volcanic eruption. In addition, this knowledge provides important input for studies
related to the geo-engineering of the earth’s atmosphere by injecting particulates and gases into
the stratosphere.

Keywords: volcanic eruption; stratosphere; atmospheric transport; stratospheric aerosols; lagrangian
transport simulation

1. Introduction

Vast amounts of gases and aerosol particles injected into the stratosphere due to
volcanic eruptions result in the perturbation of the radiative balance of the earth and the
chemical equilibrium of the stratosphere. Substantial increases in stratospheric aerosols
from volcanic eruptions are considered as natural climate experiments as they provide an
opportunity to examine the effects on the climate resulting from abrupt perturbations in
the atmosphere [1–3].

There are a number of well-known processes that ensue gradually in the stratosphere
succeeding a volcanic eruption. Strong volcanic eruptions directly inject large amounts of
sulfur dioxide (SO2), carbon dioxide (CO2) [4–6], water vapor [7], and other trace gases
into the stratosphere. The directly injected volcanic emissions disperse and cover the global
stratosphere rapidly over a typical time period of about 20 days to 1 month [3,8–10].

In contrast to their much shorter lifetimes in the troposphere, the volcanic SO2 clouds
in the stratosphere are converted to sulfuric acid (H2SO4) clouds consisting of tiny sulfate
aerosol particles in the presence of hydroxyl (OH) radicals (due to oxidation), and the sub-
sequent transformation leads to an increase in the total amount of stratospheric aerosol [11].
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This increases the optical depth, causing an enhancement in scattering and absorption
of solar radiation, resulting in an increase in albedo and a net loss of energy [3]. Winds
rapidly disperse the particles throughout the lower stratosphere. Because of the typical
1–2-year residence time of the particles in the stratosphere, stratospheric aerosol injec-
tions become nearly global in extent, resulting in near-global perturbation to the radiative
energy balance.

Volcanic eruptions inject large amounts of particles into the lower stratosphere. This
causes the radiative heating of the stratosphere and the cooling of the surface/troposphere.
The stratosphere gains shortwave radiative energy while the surface experiences a deficit
due to the volcanic aerosol layer. Because of the dominant scattering of the solar radiation by
the sulfate aerosols, the net effect of volcanic eruptions is to cool the planet [1,3]. Following
radiative balance perturbations there are multiple complex feedback processes affecting the
entire Earth–atmosphere system at different scales [12–14]. For example, the perturbation
in solar flux due to the Mount Pinatubo volcanic eruption, with a volcanic explosivity index
6, injected approximately 30 Tg of volcanic ash into the stratosphere, was reported to cause
an average global cooling of −0.5 ◦C for ~2 years [15,16].

An increase in the concentration or surface area density of sulfate aerosols provides
additional pathways of heterogeneous chemistry and modifies the relative importance of
the catalytic processes responsible for ozone depletion in the stratosphere due to changes in
ClOx-induced ozone depletion chemistry through the intermediary of NOx chemistry [17].
The increase in stratospheric aerosol surface area resulting from a volcanic eruption also
makes these catalytic processes more effective for ozone depletion [18,19].

The increase in stratospheric aerosol optical depth (AOD) causes local heating due
to the absorption of solar radiation, which results in changes in thermal structure and
mean circulation patterns. A change in mean circulation can affect the vertical distribution
of ozone, causing local depletion. A temperature change can change the reaction rate
constants for several reactions, causing a change in the production/destruction of ozone.
Changes in actinic flux will also affect the photo dissociation rate and affect the ozone
balance [18].

Several major eruptions, including Agung in 1963, El Chichón in 1982, and Pinatubo
in 1991, occurred during the last century. Investigations of the Mt. Pinatubo eruption
provided significant knowledge on the radiative forcing and response characteristics of
stratospheric aerosols [20,21]. The eruption of Mount Pinatubo had significant effects on
the earth’s climate. Top-of-atmosphere radiation measurements from satellites showed that
the Mount Pinatubo eruption resulted in a significant decrease in absorbed solar radiation
in the earth–atmosphere system. The global mean decrease in absorbed solar radiation
in the period immediately following the eruption was about 5 Wm−2. The albedo of the
earth–atmosphere system increased by up to 0.007 because of the reflection of up to an
additional 2.5 Wm−2 of solar radiation over the following two years [22,23]. The most
optically thick portions of the aerosols from Mt. Pinatubo were located between an altitude
of 20 km and 25 km and were confined to 10◦ S–30◦ N during the early period [24,25]. The
stratospheric aerosol optical depths up to latitudes of at least 70◦ N were observed to be
affected within 2–3 months after the eruption. The global mean stratospheric aerosol optical
depth increased by 1400% within the first year following the eruption (from approximately
0.01 to a peak value of 0.14) [22]. The stratospheric aerosol surface area concentrations at
mid-latitudes increased by ~40% due to Mt. Pinatubo, and in the core of the volcanic plume
they were increased by 70% [26,27].

The Hunga Tonga-Hunga Ha’apai (HTHH) volcano (175.38◦ W, 20.54◦ S) erupted
explosively at 04:00–04:10 UTC on 15 January 2022. As this was a submarine explosion,
it injected a substantial amount of water and ice into the stratosphere [28]. It has been
reported that the eruption caused the formation of umbrella clouds at 31 km and at 17 km.
The highest plume reached approximately 55–58 km [29–31]. A very strong westward
propagation of the upper umbrella cloud was observed [30]. Gupta et al. [30] reported
on the growth and spread of the umbrella cloud after the eruption based on Himawari
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satellite data. There are several studies reporting intense Lamb wave and gravity wave
activity from the surface to the ionosphere due to the HTHH eruption based on joint
satellite observations [32–37]. The radiative effects of the HTHH eruption have also been
computed [38,39]. The HTHH eruption was reported to cause significant hydration of the
stratosphere [40].

In this study, we investigated how the SO2 plume spread globally after the HTHH
volcanic eruption, the subsequent formation of the sulfuric acid cloud, and its optical
effects, based on multi-satellite observations. This study shows the following: (1) the SO2
plume encircled the globe within 19–21 days of the HTHH eruption, with a mean spread
speed of ~2500 km/day. (2) The aerosol concentration was enhanced at an altitude range
of 20–25 km due to new particle formation triggered by the increased amount of SO2 and
subsequent growth. (3) The peak enhancement in the aerosol extinction coefficient was
~600% of the unperturbed pre-HTHH eruption level. (4) A visualization of the dynamics of
the changes in aerosol population. (5) The effects of stratospheric circulation patterns, such
as the quasi-biennial oscillation (QBO), Brewer Dobson circulation, and large scale Rossby
waves, are clearly shown. (6) A prominent asymmetrical distribution of the sulfuric acid
clouds in the southern hemisphere is observed.

2. Data and Methodology

The satellite data listed in Table 1 were used for this study.

Table 1. List of satellite data products used for this study.

Satellite Data Product Source

aOMI OMSO2 L2
OMI/Aura Sulfur Dioxide (SO2) Total Column ASDC/NASA Earthdata

SAGE III SAGE III/ISS L2 solar event species profile (HDF5) V052 ASDC/NASA Earthdata

CALIPSO CAL_LID_L2_05kmAPro-Standard-V4-20
CAL_LID_L2_05kmAPro-Prov-V3-41 ASDC/NASA Earthdata

2.1. OMSO2 L2 Dataset from OMI Observations

The Aura Ozone Monitoring Instrument (OMI) level 2 sulfur dioxide (SO2) total
column product (OMSO2) [41] data were used for this study. The retrieval was based on a
principal component analysis (PCA)-based algorithm with new SO2 Jacobian lookup tables
and a priori profiles. Each file contains data from the daylit half of an orbit (~53 min). There
are approximately 14 orbits per day. The resolution of the data is 13 × 24 km2 at nadir, with
a swath width of 2600 km and 60 pixels per scan line every 2 s.

For each OMI scene there are six different estimates of the vertical column density
(VCD) of SO2 in Dobson Units (1DU = 2.69 × 1016 molecules/cm2), obtained by making
different assumptions about the vertical distribution of SO2. ColumnAmountSO2_STL is
the SO2 VCD corresponding to an assumed lower stratospheric SO2 profile with a center of
mass altitude of 18 km. At these altitudes the averaging kernel is weakly dependent on
altitude, so that differences in actual cloud height in the lower and middle stratosphere
produce only small errors for a plume located at ~28 km altitude. The biases with latitude
and viewing angle are generally less than 0.2 DU. The noise level in the background data
is about 0.2 DU. This product is recommended for use in studies on explosive volcanic
eruptions with plumes reaching the stratosphere. The sensitivity of the OMI measurements
has permitted the tracking of volcanic SO2 clouds located at ~20 km altitudes encircling the
entire globe in about 16 days (e.g., [42]). The OMSO2 is expected to provide good retrieval
results when the SO2 loading is less than ~50 DU. When the SO2 loadings are higher than
~100 DU, the algorithm underestimates the true SO2 amount, and the higher the loading
the larger the underestimation [43].
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2.2. SAGE III Data

The g3bssp_52 level-2 solar event species profiles (HDF5) V052 data product from
the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space
Station (ISS) (SAGE III/ISS) [44] was used for this study [NASA/LARC/SD/ASDC, 2017].
It contains all the species products for a single solar event. This ISS-based instrument
provides vertical profiles of aerosol extinction, temperature, water vapor, ozone, chlorine
dioxide and nitrogen dioxide from occultation measurements along the line of sight between
the Sun and the satellite through the earth’s atmosphere. The SAGE III data from January
2017 to September 2022 were used for this study.

2.3. CALIPSO Lidar Data

The CAL_LID_L2_05kmAPro-Standard-V4-20 and CAL_LID_L2_05kmAPro-Prov-V3-
41 data products of the CALIPSO satellite [NASA/LARC/SD/ASDC, 2016 and 2018] were
used for this study. These are Level 2 aerosol profiles derived from the CALIPSO Level
1B data (attenuated backscatter signal). CAL_LID_L2_05kmAPro-Standard-V4-20 is the
standard version data product. CAL_LID_L2_05kmAPro-Prov-V3-41 is the provisional
version 3.41 data product using the CALIPSO lidar ratio selection algorithm. The lidar
Level 2 data products contain averaged aerosol profile data and ancillary data. The aerosol
profile products are generated at a uniform horizontal resolution of 5 km. The aerosol
backscatter and extinction coefficients are computed using a lidar ratio selected by the
CALIPSO lidar ratio selection algorithm. The CALIPSO data products from 15 January
2022 to July 2022 were used to detect the occurrence of the stratospheric aerosol layer from
the HTHH eruption.

2.4. MPTRAC Model

Massive-Parallel Trajectory Calculations (MPTRAC) is a Lagrangian particle dispersion
model for the analysis of atmospheric transport processes in the free troposphere and
stratosphere [45,46]. MPTRAC calculates air parcel trajectories by solving the kinematic
equation of motion using horizontal wind and vertical velocity fields. The MPTRAC model
solves the equation of motion using the midpoint method, giving an optimal balance
between accuracy and computational efficiency. The MPTRAC model uses a constant
vertical diffusivity of 0.1 m2 s−1 for the stratosphere as a default value. The source code
of the MPTRAC model can be obtained from https://doi.org/10.5281/zenodo.4400597
(accessed on 5 November 2022). The ERA5 reanalysis [47] model level data downloaded
from the Juelich supercomputing facility were used as the meteorological input data for the
MPTRAC. ERA5 provides hourly outputs of a comprehensive set of variables at ~30 km
horizontal resolution and 137 vertical levels spanning from the surface up to 0.01 hPa.

3. Results and Discussion
3.1. Initial Phase of the Plume Spread
3.1.1. Observation of Spread of the SO2 Plume Using OMI Satellite Measurements

The one-day time-averaged maps of total SO2 column amount from 15 January
2022 to 2 February 2022 are shown in Figure 1. This was generated using the Colum-
nAmountSO2_STL data of the OMI OMSO2 level 2 data product. It can be seen clearly that
the volcanic SO2 cloud from the HTHH eruption spreads in a westward direction. It took
about 21 ± 2 days to encircle the entire globe. Latitudinally, the SO2 plume was drifting
slowly towards the equator, and most of the plume remained confined in the latitude band
from 0 to 30◦ S. Initially, the plume was confined to a narrow latitude band having peak
SO2 concentrations, but over time the plume was dispersed to a larger area and the column
SO2 concentrations decreased gradually. By the end of the third week, the plume was
dispersed such that it was below the detection limit of the OMI, and it could not be traced
any further.

The daily averaged longitude–time plot of the SO2 column amount in the latitude
band of 0 to 30◦ S is shown in the upper panel of Figure 2. This shows the gradual encircling

https://doi.org/10.5281/zenodo.4400597
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by the SO2 cloud emitted by the volcanic eruption. The daily averaged latitude–time plot
of the SO2 column amount is shown in lower panel of Figure 2. The gradual shifting of the
plume toward the equator can be seen clearly. After about 20 days, the plume has dispersed
almost uniformly in the altitude band of 0 to 30◦ S.

Based on the daily averaged column amount of SO2, an approximate calculation
has been carried out for estimating the speed of the westward longitudinal spread of the
SO2 plume, as shown in Figure 3, by using the spread length per day. Along with this,
the maximum value of the SO2 amount (in DU) of the plume in the daily averaged map
of the OMI data is also plotted in Figure 3. The mean speed of the plume was about
2500 ± 500 km per day. Here we can see that the speed was initially ~1500 km/day and
increased to >3500 km/day during the later days. This difference in speed was determined
by the altitude at which plume was propagating. Initially, the plume was at higher altitude,
so the speed was lower, but as it settled down the speed of the plume increased due to the
prevailing background wind velocity. The differences in velocity at different altitudes are
expected be the cause of the different transport velocities on different days.

At the time of the HTHH eruption, the QBO was in its easterly phase at ~10 hPa (https:
//acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html (accessed on 28 November
2022)), which caused the dominant westward propagation of the SO2 cloud from the
HTHH eruption.

Similar results were reported for El Chichon [48], for which it was found that the
leading edge of the volcanic plume was moving towards the west all the time. During
the first 12 days, the plume moved more slowly. It also had different transport velocities
on different days. The speed of the El Chichon plume was ~22 m/s (~1900 km/day).
Similarly, Mount Pinatubo injected a large amount of gas and aerosols into the stratosphere,
and within two weeks most of the stratospheric aerosol clouds circled the planet while
spreading to latitudes between 20◦ S–30◦ N [20,49–51]. During the early period of the
Mount Pinatubo eruption, the cloud was composed of SO2 gas, crustal particles, and tiny
sulfuric droplets. Gradually, the SO2 gas was converted to sulfuric acid aerosols. There
were two types of transport regimes suggested for the dispersal of the Mt Pinatubo eruption,
including a lower transport regime causing the rapid poleward and downward movement
of volcanic material. At higher altitudes, the injected material tended to remain over the
equator, bounded between 20◦ N to 20◦ S, and could persist for years [20].

3.1.2. HTHH Plume Observations Using SAGE III and CALIPSO Satellite Data

During the HTHH eruption, the SAGE III and CALIPSO satellites, which are mainly
used for observing the vertical distribution of atmospheric gases and aerosols, also made
measurements and detected an enhancement in stratospheric aerosol concentrations.
Figure 4 shows the vertical distribution of the SAGE III observed aerosol extinction co-
efficients (a measure of the extinction of solar radiation due to the presence of aerosols)
and shows the volcanic plume at heights of ~37 km, ~42 km, and ~34 km on 17, 18, and
19 January, respectively.

The altitude variation in the range-corrected attenuated backscatter signals of the
CALIPSO lidar observations during 17 and 19 January is shown in Figures 5–7. These lidar
measurement captured the volcanic plume between 20 km and 30 km of altitude very well.
The plume seen in Figure 7 by the CALIPSO lidar also includes the region where the plume
was observed by SAGE III (Figure 4) on 19 January 2022, showing that they both detected
the enhancement in signal due to the same elevated stratospheric aerosol layer caused by
the HTHH eruption. The CALIPSO and SAGE III observations are also consistent with the
OMI observed columnar concentration shown in Figure 1. The HTHH plume observed by
the SAGE III and CALIPSO lidar matched well with the spatial and temporal expansion
of the plume as observed by the OMI satellite instrument. The remaining differences
in Figures 1 and 4–8 are due to different parts of the HTHH plume being observed at
different times.

https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
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Figure 1. One-day time-averaged maps of column SO2 amount from 15 January 2022 to 2 February 
2022 obtained using the ColumnAmountSO2_STL data of the OMI OMSO2 data product. Each 
panel corresponds to a one-day average, starting from the topmost panel for 15 January 2022. The 
limit of the color bar is kept very low compared with the real range of the SO2 concentration to 
enhance the appearance of the spatial extent. The daily maximum amount of SO2 is plotted in Figure 
3. The location of the HTHH volcano is marked with a white x. 

Figure 1. One-day time-averaged maps of column SO2 amount from 15 January 2022 to 2 February
2022 obtained using the ColumnAmountSO2_STL data of the OMI OMSO2 data product. Each panel
corresponds to a one-day average, starting from the topmost panel for 15 January 2022. The limit
of the color bar is kept very low compared with the real range of the SO2 concentration to enhance
the appearance of the spatial extent. The daily maximum amount of SO2 is plotted in Figure 3. The
location of the HTHH volcano is marked with a white x.
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Atmosphere 2022, 13, 2055 8 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 25 
 

 

shows the volcanic plume at heights of ~37 km, ~42 km, and ~34 km on 17, 18, and 19 
January, respectively. 

 
Figure 4. Altitude profiles of aerosol extinction at 384 nm observed by the SAGE III satellite for three 
days during which elevated layers at altitudes greater than 30 km were seen. 

The altitude variation in the range-corrected attenuated backscatter signals of the 
CALIPSO lidar observations during 17 and 19 January is shown in Figures 5–7. These lidar 
measurement captured the volcanic plume between 20 km and 30 km of altitude very 
well. The plume seen in Figure 7 by the CALIPSO lidar also includes the region where the 
plume was observed by SAGE III (Figure 4) on 19 January 2022, showing that they both 
detected the enhancement in signal due to the same elevated stratospheric aerosol layer 
caused by the HTHH eruption. The CALIPSO and SAGE III observations are also con-
sistent with the OMI observed columnar concentration shown in Figure 1. The HTHH 
plume observed by the SAGE III and CALIPSO lidar matched well with the spatial and 
temporal expansion of the plume as observed by the OMI satellite instrument. The re-
maining differences in Figures 1 and 4–8 are due to different parts of the HTHH plume 
being observed at different times. 

Figure 4. Altitude profiles of aerosol extinction at 384 nm observed by the SAGE III satellite for three
days during which elevated layers at altitudes greater than 30 km were seen.

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 5. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
17 January 2022 showing the volcanic plume at altitudes from 20 km to 28 km, latitudes of ~8° S to 
26° S, and longitudes of 149° E to 153° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

 
Figure 6. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
19 January 2022 showing the volcanic plume at altitudes from 22 km to 28 km, latitudes of ~10° S to 
26° S, and longitudes of 106° E to 110° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

Figure 5. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on
17 January 2022 showing the volcanic plume at altitudes from 20 km to 28 km, latitudes of ~8◦ S to
26◦ S, and longitudes of 149◦ E to 153◦ E. Image obtained from https://www-calipso.larc.nasa.gov/
products/lidar/browse_images/std_v4_index.php (accessed on 12 July 2022).

https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php
https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php


Atmosphere 2022, 13, 2055 9 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 5. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
17 January 2022 showing the volcanic plume at altitudes from 20 km to 28 km, latitudes of ~8° S to 
26° S, and longitudes of 149° E to 153° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

 
Figure 6. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
19 January 2022 showing the volcanic plume at altitudes from 22 km to 28 km, latitudes of ~10° S to 
26° S, and longitudes of 106° E to 110° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

Figure 6. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on
19 January 2022 showing the volcanic plume at altitudes from 22 km to 28 km, latitudes of ~10◦ S to
26◦ S, and longitudes of 106◦ E to 110◦ E. Image obtained from https://www-calipso.larc.nasa.gov/
products/lidar/browse_images/std_v4_index.php (accessed on 12 July 2022).

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 7. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
19 January 2022 showing the volcanic plume at altitudes from 28 km to >30 km, latitudes of ~2° S to 
21° S, and longitudes of 83° E to 86° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

Figure 8 shows the altitude variation in the aerosol extinction coefficients at 532 nm 
on selected days after the eruption (when the elevated layer was observed), as estimated 
using the CALIPSO lidar observations (level 2 data). We can see that the plume remained 
in an altitude band between 20 km and 30 km. It might even have existed above 30 km, as 
seen in the 19 January profile from SAGE III. However, the CALIPSO data are available 
only up to an altitude of 30 km. It is worth noting that the extinction coefficients often 
reached a very high value of 1, suggesting that the plume caused a significant reduction 
in the solar radiation reaching the surface. 

 
Figure 8. Plot of aerosol extinction coefficients obtained from CALIPSO lidar observations on dif-
ferent days after the HTHH eruption. The altitude ranges from 20 km to 30 km. 

3.1.3. Lagrangian Transport Modelling of the HTHH Plume Dispersal 
The propagation of the SO2 plume injected by the HTHH volcanic eruption on 15 

January 2022 has been simulated with the MPTRAC Lagrangian transport model. This 
model was already used in several studies for tracking the spread of volcanic eruption 
plumes [52–54]. The MPTRAC simulation was initiated at 04:15 UTC on 15 January 2022 
at 175.38° W and 28° S. The altitude distribution and the spread of the plume immediately 

Figure 7. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on
19 January 2022 showing the volcanic plume at altitudes from 28 km to >30 km, latitudes of ~2◦ S to
21◦ S, and longitudes of 83◦ E to 86◦ E. Image obtained from https://www-calipso.larc.nasa.gov/
products/lidar/browse_images/std_v4_index.php (accessed on 12 July 2022).

https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php
https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php
https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php
https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php


Atmosphere 2022, 13, 2055 10 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 7. Along-track curtain of attenuated backscatter signals observed by the CALIPSO lidar on 
19 January 2022 showing the volcanic plume at altitudes from 28 km to >30 km, latitudes of ~2° S to 
21° S, and longitudes of 83° E to 86° E. Image obtained from https://www-
calipso.larc.nasa.gov/products/lidar/browse_images/std_v4_index.php (Accessed on 12 July 2022). 

Figure 8 shows the altitude variation in the aerosol extinction coefficients at 532 nm 
on selected days after the eruption (when the elevated layer was observed), as estimated 
using the CALIPSO lidar observations (level 2 data). We can see that the plume remained 
in an altitude band between 20 km and 30 km. It might even have existed above 30 km, as 
seen in the 19 January profile from SAGE III. However, the CALIPSO data are available 
only up to an altitude of 30 km. It is worth noting that the extinction coefficients often 
reached a very high value of 1, suggesting that the plume caused a significant reduction 
in the solar radiation reaching the surface. 

 
Figure 8. Plot of aerosol extinction coefficients obtained from CALIPSO lidar observations on dif-
ferent days after the HTHH eruption. The altitude ranges from 20 km to 30 km. 

3.1.3. Lagrangian Transport Modelling of the HTHH Plume Dispersal 
The propagation of the SO2 plume injected by the HTHH volcanic eruption on 15 

January 2022 has been simulated with the MPTRAC Lagrangian transport model. This 
model was already used in several studies for tracking the spread of volcanic eruption 
plumes [52–54]. The MPTRAC simulation was initiated at 04:15 UTC on 15 January 2022 
at 175.38° W and 28° S. The altitude distribution and the spread of the plume immediately 
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Figure 8 shows the altitude variation in the aerosol extinction coefficients at 532 nm on
selected days after the eruption (when the elevated layer was observed), as estimated using
the CALIPSO lidar observations (level 2 data). We can see that the plume remained in an
altitude band between 20 km and 30 km. It might even have existed above 30 km, as seen
in the 19 January profile from SAGE III. However, the CALIPSO data are available only up
to an altitude of 30 km. It is worth noting that the extinction coefficients often reached a
very high value of 1, suggesting that the plume caused a significant reduction in the solar
radiation reaching the surface.

3.1.3. Lagrangian Transport Modelling of the HTHH Plume Dispersal

The propagation of the SO2 plume injected by the HTHH volcanic eruption on
15 January 2022 has been simulated with the MPTRAC Lagrangian transport model. This
model was already used in several studies for tracking the spread of volcanic eruption
plumes [52–54]. The MPTRAC simulation was initiated at 04:15 UTC on 15 January 2022 at
175.38◦ W and 28◦ S. The altitude distribution and the spread of the plume immediately
after the eruption have been detailed by many studies using observations from satellites,
such as Himawari imagery [30]. The SO2 plume was initialized at this grid box at an
altitude of 28 km. The SO2 mass was fixed at 400 kt. The meteorological inputs were
provided by model level ERA5 hourly data files starting from the model initiation. The
simulation was carried out from 15 January 2022 to 26 January 2022.

The simulated spread of the HTHH plume is shown in Figures 9 and 10. Figure 9
shows the spatial distribution of the SO2 plume with colors representing the altitude of
the plume in the stratosphere. Figure 10 is same as Figure 9, except that the colors show
the column density of the SO2 plume in DU. Additional simulations were carried out by
initiating the plume at different altitudes from 25 km to 35 km. However, the initial plume
altitude of ~28 km provided the best match between the simulated transport with the OMI
satellite data shown in Figure 1. The e-folding lifetime of SO2 in the stratosphere was
kept fixed to 7 days. A comparison with the satellite observations shows that the plume
injected into the stratosphere can be tracked for a long time using transport models such
as MPTRAC.
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from 16 to 26 January 2022. The initial plume height of the simulation was set to an altitude of 28 
km. The initial latitude and longitude of the trajectories were set to the location of the HTHH erup-
tion. The simulation starting time was 04:15 UTC on 15 January 2022. The colors show the altitude 
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Figure 9. Lagrangian transport simulation of the HTHH SO2 plume dispersal in the stratosphere
from 16 to 26 January 2022. The initial plume height of the simulation was set to an altitude of 28 km.
The initial latitude and longitude of the trajectories were set to the location of the HTHH eruption.
The simulation starting time was 04:15 UTC on 15 January 2022. The colors show the altitude of the
plume in km. The topmost panel is for 00:00 UTC on 16 January 2022. The location of the HTHH
volcano is marked with a red x.
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Figure 10. Lagrangian transport simulation of the HTHH SO2 plume dispersal in the stratosphere
from 16 to 26 January 2022, showing the column density of the stratospheric SO2 in DU. The topmost
panel is for 00:00 UTC on 16 January 2022. The location of the HTHH volcano is marked with a red x.

3.2. Growth of the Sulfuric Acid Cloud and Its Optical Effects

A plot of monthly mean aerosol extinction coefficients with latitude at the wavelength
of 384 nm from 2017 to 2021 using the SAGE III data is shown in Figure 11. It shows that
a prominent aerosol layer above 20 km was not present throughout this period. There
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were years when the elevated layer was present below 20 km, which might have been
caused by other volcanic eruptions. It is clear from Figure 11 that a state of unperturbed
background stratospheric aerosol is rare due to injections of significant amounts of SO2
directly into the stratosphere by frequent volcanic eruptions. The sulfuric acid aerosol
clouds are distributed globally over a period of months and have very high optical depths
compared with background stratospheric aerosols. It typically takes a few years for the
stratosphere to regain its natural background [11].
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Figure 11. Plots of monthly mean aerosol extinction coefficients at a 384 nm wavelength with latitude
from 2017 to 2021 using SAGE III observations. The x-axis of each panel corresponds to a latitude
range from 50◦ S to 50◦ N.

Figure 12 shows the altitude variation in the 384 nm aerosol extinction coefficients
during the months following the 2022 HTHH volcanic eruption. Here we can see the
overwhelming enhancement in aerosol extinction coefficients at the altitude range of 20 km
to 26 km. This shows that the formation of the sulfuric acid clouds and subsequent growth
in particle size caused a significant enhancement in the aerosol extinction coefficient. A
histogram of aerosol extinction coefficients at 384 nm during the different months following
the eruption is shown in Figure 13. This shows the dynamics of the sulfuric acid droplet
growth happening at different altitudes each month. The post-eruption part of January
2022 appears to show an unperturbed state of the stratosphere, except for the occurrence
of high aerosol extinction coefficient cases at the altitude of 33–40 km. With the progress
of time, the occurrence of high aerosol extinction coefficient cases increased. The highest
occurrences of aerosol extinction coefficient cases were observed during February 2022
and were located in the low latitude tropical belt. However, the frequency of occurrence
were quite low compared with the March 2022–May 2022. The occurrences of high aerosol
extinction coefficients were initially observed around an altitude of 25 km. However, after
April 2022, the high aerosol extinction coefficient occurrence slowly shifted toward lower
altitudes. During September 2022, high aerosol extinction coefficient occurrences were
present at altitudes of 15 km to 26 km. This was due to the poleward transport of SO2
and sulfuric acid droplets and the subsequent growth in that area. At the same time, the
concentration of sulfuric acid droplets reduced in the tropical region. As seen in Figure 12,
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the lower altitude occurrences were observed toward the poleward region and the higher
altitude occurrences were observed over the tropical regions, mainly due to latitudinal
variations in tropopause altitude.
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Figure 12. Plots of monthly mean aerosol extinction coefficients at a 384 nm wavelength at different
latitudes from January 2022 to September 2022 using SAGE III observations. The x-axis of each panel
corresponds to a latitude range from 50◦ S to 50◦ N.

The monthly mean Ångström exponent calculated using the 520 nm and 1021 nm
aerosol extinction coefficient observations by SAGE III is plotted in Figure 14, and the
colored histogram corresponding to this is plotted in Figure 15. The Ångström exponent (α)
at each altitude has been computed by using the aerosol extinction coefficients measured
by SAGE III at 520 nm and 1021 nm wavelengths,

α(z) =
−log

(
k(z)520nm
k(z)1021nm

)
log

( 520
1021

) ,

where k(z)520nm and k(z)1021nm are the aerosol extinction coefficients at the 520 nm and 1021
nm wavelength channels of SAGE III, respectively, at altitude z.

The Ångström exponent provides a measure of the sizes of the aerosol particles. A
lower Ångström exponent corresponds to a larger size, and vice versa [55]. In the tropical
region around the altitude of ~28 km during the February 2022, it can be seen that the
Ångström exponents are reduced compared with those in the surrounding area. This region
of reduced Ångström exponents grows from February to May due to the formation of
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sulfuric acid droplets, and subsequently due to coagulation, condensation, and coalescence.
These droplets are transported toward the poles with time, altering the distribution of
the aerosol particles therein. From June to September, the enhancement in the Ångström
exponents is seen gradually at mid-latitudes due to poleward transport as well as the
in-situ formation and growth of sulfuric acid droplets. Here it may be noted that the
poleward transport in the southern hemisphere is much stronger compared with that in the
northern hemisphere.

The method for calculating the surface area density (SAD) from the SAGE observations
has been discussed in Thomason et al. [56]. Using the method described therein, the surface
area densities for different months after the HTHH eruption were calculated using the
aerosol extinction coefficient observations at 520 nm and 1021 nm wavelengths by SAGE III
as given below.

SAD = k1021

(
1854.97 + 90.137r + 66.97r2

1 − 0.1745r + 0.00588r2

)
Here, k1021 is the aerosol extinction coefficient of the 1021 nm channel in units of km−1

and r is the 520 nm to 1021 nm aerosol extinction coefficient ratio. This equation provides
the surface area density in the units of µm2cm−3.
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A plot of monthly mean surface area density with latitude during 2022 for different
months is shown in Figure 16. The mean surface area density at a ~25 km altitude reached
>15 µm2cm−3 from February 2022 to May 2022. This enhancement was mainly in the tropi-
cal region. Subsequently, the surface area density increase shifted towards the poleward
latitudes but it was of a comparatively lower magnitude than that which occurred over
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the tropical region. The histogram plot (Supplementary Figure S1) of surface area density
shows that the highest surface area density occurred during the month of February, reach-
ing more than the 50 µm2cm−3. Over the following months, the occurrences of high surface
area density reduced gradually. However, the frequency of occurrence of high surface area
density of sulfuric acid droplets increased until May 2022. The frequency distribution of the
surface area density and aerosol extinction coefficient are similar, as the aerosol extinction
coefficient is directly dependent on the surface area density of the scatterers.

Atmosphere 2022, 13, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 14. Plots of monthly mean Ångström exponents with latitude using 520 nm and 1021 nm 
wavelength SAGE III observations during 2022. The x-axis of each panel corresponds to a latitude 
range from 50° S to 50° N. 

Figure 14. Plots of monthly mean Ångström exponents with latitude using 520 nm and 1021 nm
wavelength SAGE III observations during 2022. The x-axis of each panel corresponds to a latitude
range from 50◦ S to 50◦ N.

The altitude variation in the monthly mean of all SAGE III observations and the
percentage enhancement in different months after the eruption with respect to January
2022 (pre-eruption) are shown in Figure 17. The peak enhancement occurred in the month
of February 2022. However, the latitude–altitude extent of the sulfuric acid clouds was
still limited in February. In the later months, the latitude as well as the altitude spread of
the SO2 plume increased. However, peak enhancement was less than in February. The
radiative impact would be much higher as it would be covering a larger latitude.

Based on a simple radiative equilibrium model, Zhang et al. [39] computed that during
the next 1–2 years the global mean surface air temperature will decrease by 0.0315–0.1118 ◦C
due to an increase of 0.0019 in the global AOD. This impact is much less than that of the El
Chichon eruption (AOD increase: 0.0325, SW flux reduction: 0.975 W m−2, global mean
surface air temperature change: 0.3 ◦C). The recent update shows that the amount of SO2
injected into the stratosphere by HTHH is ~0.4 million tons, i.e., only 5.7% of that injected
into the stratosphere by the El Chichon eruption (7 million tons).
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The distribution of the sulfuric acid aerosols, which can be inferred from Figures 12–18,
has an asymmetrical distribution in the southern hemisphere. The aerosols were located at
altitudes of 20–25 km during the initial months after the eruption, and they were located
mainly in southern tropical belt. They were later dispersed to lower altitudes in the mid-
latitude regions due to poleward transport. The spatial and temporal variations in the
HTHH sulfuric acid aerosols are a direct manifestation of stratospheric transport processes
such as the QBO, the Brewer Dobson circulation (BDC), and large scale Rossby waves.
The BDC and large scale Rossby waves are responsible for the transport of sulfuric acid
aerosols from the tropics to middle latitudes. Eventually, the aerosols will be removed by a
variety of removal processes, such as mixing with tropospheric air due to transport across
isentropic surfaces, cloud scavenging, etc. [11].

It is interesting to note that during January–May, the aerosols were lying mostly in
the tropical belt. However, in June, there was rapid poleward transport. This is directly
related to the phase of the QBO. It has been reported in previous studies that during
the easterly phase of the QBO, the stratospheric aerosols are compressed toward the
tropics, and during the westerly phase of the QBO, the aerosols are transported toward
the poles ([11] and references therein). During January 2022 to May 2022, the QBO was
in its easterly phase at altitudes of 25–30 km, and during June, the QBO phase became
westerly (https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html, accessed on
5 November 2022).

https://acd-ext.gsfc.nasa.gov/Data_services/met/qbo/qbo.html
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3.3. Long-Term Lagrangian Transport Simulation of the HTHH Plume Dispersal

The Lagrangian transport simulation of the HTHH plume using the MPTRAC model
described earlier was further continued until 1 April 2022. The results of the MPTRAC sim-
ulation for selected days are shown in Figure 18. The MPTRAC simulation is reproducing
the spread of the sulfuric acid clouds as observed by SAGE III. The dominant confinement
of the plume in the southern hemisphere is also seen in the simulations.
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Atmosphere 2022, 13, 2055 20 of 23Atmosphere 2022, 13, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 18. Left panels: spatial distribution of air parcel altitudes (km) of the HTHH plume obtained 
from the Lagrangian transport simulation using the MPTRAC model. Right panels: spatial distribu-
tion of air parcel densities (/km2) of the HTHH plume. 

4. Summary 
In this study, we investigated the global spread of the HTHH volcanic eruption using 

OMI, SAGE III, and CALIPSO lidar data and Lagrangian transport simulations obtained 
using the MPTRAC model. During the initial phase of the spread, the dominant westward 
propagation of the SO2 plume encircled the globe in the 0–30° S latitude band within 21 ± 
2 days. The average speed of the westward spread inferred by the plume spread length 
per day was found to be about 2500 ± 500 km/day. The difference in the transport velocity 
during the different days is mainly attributed to the difference in the wind speeds at the 
different altitudes at which the plume was propagating. In addition, the plume coverage 
slowly expanded to northern and southern hemisphere latitudes due to the dispersal pro-
cess. The sulfuric acid cloud started appearing in the stratosphere within just a few days 
due to the formation of tiny sulfuric acid droplets because of the reaction between SO2 
and OH radicals and subsequent growth due to coagulation. This was observed in the 
SAGE III data as well as in the CALIPSO data, and the frequent occurrence of high aerosol 
extinction coefficient values in the SAGE III and CALIPSO altitude profiles was observed. 
These high aerosol extinction coefficient elevated layers were mostly centered between 
20–26 km altitudes. The peak enhancement of extinction was as large as 600% during Feb-
ruary at an altitude of about 24 km. The peak AOD enhancement due to the sulfuric acid 
cloud formation after the HTHH eruption was about half of that caused by the Mt. 
Pinatubo eruption. The global spread of the Tonga plume in the stratosphere has been 
simulated using the MPTRAC Lagrangian transport model. The simulated plume distri-
bution is matching well with the observations of the OMI satellite. The progression of the 

Figure 18. Left panels: spatial distribution of air parcel altitudes (km) of the HTHH plume ob-
tained from the Lagrangian transport simulation using the MPTRAC model. Right panels: spatial
distribution of air parcel densities (/km2) of the HTHH plume.

4. Summary

In this study, we investigated the global spread of the HTHH volcanic eruption using
OMI, SAGE III, and CALIPSO lidar data and Lagrangian transport simulations obtained
using the MPTRAC model. During the initial phase of the spread, the dominant westward
propagation of the SO2 plume encircled the globe in the 0–30◦ S latitude band within
21 ± 2 days. The average speed of the westward spread inferred by the plume spread
length per day was found to be about 2500 ± 500 km/day. The difference in the transport
velocity during the different days is mainly attributed to the difference in the wind speeds
at the different altitudes at which the plume was propagating. In addition, the plume
coverage slowly expanded to northern and southern hemisphere latitudes due to the
dispersal process. The sulfuric acid cloud started appearing in the stratosphere within just a
few days due to the formation of tiny sulfuric acid droplets because of the reaction between
SO2 and OH radicals and subsequent growth due to coagulation. This was observed in
the SAGE III data as well as in the CALIPSO data, and the frequent occurrence of high
aerosol extinction coefficient values in the SAGE III and CALIPSO altitude profiles was
observed. These high aerosol extinction coefficient elevated layers were mostly centered
between 20–26 km altitudes. The peak enhancement of extinction was as large as 600%
during February at an altitude of about 24 km. The peak AOD enhancement due to the
sulfuric acid cloud formation after the HTHH eruption was about half of that caused by
the Mt. Pinatubo eruption. The global spread of the Tonga plume in the stratosphere has
been simulated using the MPTRAC Lagrangian transport model. The simulated plume
distribution is matching well with the observations of the OMI satellite. The progression
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of the sulfuric acid cloud formation and its transport with latitude and altitude has been
visualized using the altitude profiles and histograms of the aerosol extinction coefficient,
Ångström exponent, and surface area density.

The spread of the HTHH SO2 and sulfuric acid clouds is asymmetric, being largely
confined to the southern hemisphere. This asymmetrical distribution will cause an asym-
metrical radiative effect. It will be interesting to see how this asymmetrical distribution
impacts the atmospheric circulation processes.

The perturbation caused by the HTHH eruption will affect almost all components of
the earth–atmosphere system through feedback effects due to perturbation of the radiative
fluxes over all parts of the atmosphere. The eruption will also affect the composition of the
stratosphere. However, the potential radiative impact of the HTHH eruption is likely to be
much less than that of the Mt. Pinatubo eruption as the total amount of material injected in
the stratosphere is much lower. Accurate estimates of the overall radiative and climatic
effects can only be ascertained about 1–2 years after the eruption. It will be important to
see how the eruption affects the global temperature and major circulation patterns (such as
the Indian summer monsoon, El-Nino, etc.), which were reported to have been affected by
earlier volcanic eruptions.
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