000912487 001__ 912487
000912487 005__ 20230301074015.0
000912487 0247_ $$2doi$$a10.5445/IR/1000151373
000912487 0247_ $$2Handle$$a2128/33220
000912487 037__ $$aFZJ-2022-05666
000912487 041__ $$aEnglish
000912487 082__ $$a690
000912487 1001_ $$0P:(DE-Juel1)186000$$aHarzendorf, Freia$$b0$$eCorresponding author$$ufzj
000912487 245__ $$aDomestic value added as an indicator for sustainability assessment: A case study on alternative drivetrains in the passenger car sector
000912487 260__ $$aHeidelberg$$bSpringer$$c2022
000912487 3367_ $$2DRIVER$$aarticle
000912487 3367_ $$2DataCite$$aOutput Types/Journal article
000912487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671610339_28423
000912487 3367_ $$2BibTeX$$aARTICLE
000912487 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912487 3367_ $$00$$2EndNote$$aJournal Article
000912487 520__ $$aTo strengthen the economic pillar in sustainability assessment, the indicator ‘domestic value added’ is introduced. It aims at comparing established and less developed technologies regarding their prospective value added in a country. This is done by classifying a technology’s value added to the developed categories: domestic, potential domestic and non-domestic. Within this paper, two methods for assessing this indicator are introduced focussing on their applicability in a sustainability assessment context. Both methods are tested on a case study comparing two alternative drivetrain technologies for the passenger car sector (battery and fuel cell electric vehicle) to the conventionally used internal combustion engine. The first method is life cycle cost-based whereas the second is based on Input Output analysis. If a life cycle cost assessment is already available for the technology under assessment, the easier to implement life cycle cost-based approach is recommended, as the results are similar to the more complex Input Output-based approach. From the ‘domestic value added’ perspective, the battery electric vehicle is already more advantageous than the conventional internal combustion engine over the lifecycle. Fuel cell electric vehicles have the highest potential to increase their ‘domestic value added’ share in the future. This paper broadens the economic pillar in sustainability assessment by introducing a new indicator ‘domestic value added’ and giving practical information on how to prospectively assess it for existing and less developed technologies or innovations.
000912487 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000912487 588__ $$aDataset connected to DataCite
000912487 7001_ $$0P:(DE-Juel1)168163$$aWulf, Christina$$b1$$ufzj
000912487 7001_ $$0P:(DE-HGF)0$$aHaase, Martina$$b2
000912487 7001_ $$0P:(DE-HGF)0$$aBaumann, Manuel$$b3
000912487 7001_ $$0P:(DE-HGF)0$$aErsoy, Hüseyin$$b4
000912487 7001_ $$0P:(DE-Juel1)130493$$aZapp, Petra$$b5$$ufzj
000912487 773__ $$0PERI:(DE-600)2084025-1$$a10.1007/s10098-022-02402-1$$p3145–3169$$tClean technologies and environmental policy$$v24$$x1435-2974$$y2022
000912487 8564_ $$uhttps://juser.fz-juelich.de/record/912487/files/Full_text.pdf$$yOpenAccess
000912487 8767_ $$d2022-12-14$$eHybrid-OA$$jDEAL
000912487 909CO $$ooai:juser.fz-juelich.de:912487$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000912487 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000912487 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000912487 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-27$$wger
000912487 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912487 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000912487 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000912487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLEAN TECHNOL ENVIR : 2021$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000912487 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000912487 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000912487 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912487 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000912487 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000912487 9141_ $$y2022
000912487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186000$$aForschungszentrum Jülich$$b0$$kFZJ
000912487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168163$$aForschungszentrum Jülich$$b1$$kFZJ
000912487 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKIT$$b2
000912487 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKIT$$b3
000912487 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aKIT$$b4
000912487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130493$$aForschungszentrum Jülich$$b5$$kFZJ
000912487 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000912487 920__ $$lyes
000912487 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000912487 9801_ $$aFullTexts
000912487 980__ $$ajournal
000912487 980__ $$aVDB
000912487 980__ $$aUNRESTRICTED
000912487 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000912487 980__ $$aAPC