001 | 912510 | ||
005 | 20230224084246.0 | ||
024 | 7 | _ | |a 10.1109/JXCDC.2022.3217098 |2 doi |
024 | 7 | _ | |a 2128/33019 |2 Handle |
024 | 7 | _ | |a WOS:000915312400008 |2 WOS |
037 | _ | _ | |a FZJ-2022-05683 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Freye, Florian |0 0000-0003-3025-8910 |b 0 |
245 | _ | _ | |a Memristive Devices for Time Domain Compute-in-Memory |
260 | _ | _ | |a New York, NY |c 2022 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670913545_31169 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Analog compute schemes and compute-in-memory (CIM) have emerged in an effort to reduce the increasing power hunger of convolutional neural networks (CNNs), which exceeds the constraints of edge devices. Memristive device types are a relatively new offering with interesting opportunities for unexplored circuit concepts. In this work, the use of memristive devices in cascaded time-domain CIM (TDCIM) is introduced with the primary goal of reducing the size of fully unrolled architectures. The different effects influencing the determinism in memristive devices are outlined together with reliability concerns. Architectures for binary as well as multibit multiply and accumulate (MAC) cells are presented and evaluated. As more involved circuits offer more accurate compute result, a tradeoff between design effort and accuracy comes into the picture. To further evaluate this tradeoff, the impact of variations on overall compute accuracy is discussed. The presented cells reach an energy/OP of 0.23 fJ at a size of 1.2 μm2 for binary and 6.04 fJ at 3.2 μm2 for 4×4 bit MAC operations. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a BMBF-16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399) |0 G:(DE-82)BMBF-16ME0399 |c BMBF-16ME0399 |x 1 |
536 | _ | _ | |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K) |0 G:(DE-82)BMBF-16ME0398K |c BMBF-16ME0398K |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lou, Jie |0 0000-0003-0380-8585 |b 1 |
700 | 1 | _ | |a Bengel, Christopher |b 2 |
700 | 1 | _ | |a Menzel, Stephan |0 P:(DE-Juel1)158062 |b 3 |
700 | 1 | _ | |a Wiefels, Stefan |0 P:(DE-Juel1)187229 |b 4 |
700 | 1 | _ | |a Gemmeke, Tobias |0 0000-0003-1583-3411 |b 5 |
773 | _ | _ | |a 10.1109/JXCDC.2022.3217098 |g Vol. 8, no. 2, p. 119 - 127 |0 PERI:(DE-600)2840841-X |n 2 |p 119 - 127 |t IEEE journal on exploratory solid-state computational devices and circuits |v 8 |y 2022 |x 2329-9231 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/912510/files/Freye2022001.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:912510 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)158062 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)187229 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-08-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-08-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-15T11:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-15T11:05:14Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-15T11:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-23 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|