000912513 001__ 912513
000912513 005__ 20230217124543.0
000912513 0247_ $$2doi$$a10.1523/JNEUROSCI.2290-20.2022
000912513 0247_ $$2ISSN$$a0270-6474
000912513 0247_ $$2ISSN$$a1529-2401
000912513 0247_ $$2Handle$$a2128/33068
000912513 0247_ $$2pmid$$a35545434
000912513 0247_ $$2WOS$$aWOS:000817218600006
000912513 037__ $$aFZJ-2022-05686
000912513 082__ $$a610
000912513 1001_ $$0P:(DE-HGF)0$$aGrabowska, Martyna$$b0
000912513 245__ $$aExistence of a Long-Range Caudo-Rostral Sensory Influence in Terrestrial Locomotion
000912513 260__ $$aWashington, DC$$bSoc.$$c2022
000912513 264_1 $$2Crossref$$3online$$bSociety for Neuroscience$$c2022-05-11
000912513 264_1 $$2Crossref$$3print$$bSociety for Neuroscience$$c2022-06-15
000912513 264_1 $$2Crossref$$3print$$bSociety for Neuroscience$$c2022-06-15
000912513 3367_ $$2DRIVER$$aarticle
000912513 3367_ $$2DataCite$$aOutput Types/Journal article
000912513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671712843_12005
000912513 3367_ $$2BibTeX$$aARTICLE
000912513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912513 3367_ $$00$$2EndNote$$aJournal Article
000912513 520__ $$aIn multisegmented locomotion, coordination of all appendages is crucial for the generation of a proper motor output. In running for example, leg coordination is mainly based on the central interaction of rhythm generating networks, called central pattern generators (CPGs). In slower forms of locomotion, however, sensory feedback, which originates from sensory organs that detect changes in position, velocity and load of the legs' segments, has been shown to play a more crucial role. How exactly sensory feedback influences the activity of the CPGs to establish functional neuronal connectivity is not yet fully understood. Using the female stick insect Carausius morosus, we show for the first time that a long-range caudo-rostral sensory connection exists and highlight that load as sensory signal is sufficient to entrain rhythmic motoneuron (MN) activity in the most rostral segment. So far, mainly rostro-caudal influencing pathways have been investigated where the strength of activation, expressed by the MN activity in the thoracic ganglia, decreases with the distance from the stepping leg to these ganglia. Here, we activated CPGs, producing rhythmic neuronal activity in the thoracic ganglia by using the muscarinic agonist pilocarpine and enforced the stepping of a single, remaining leg. This enabled us to study sensory influences on the CPGs' oscillatory activity. Using this approach, we show that, in contrast to the distance-dependent activation of the protractor-retractor CPGs in different thoracic ganglia, there is no such dependence for the entrainment of the rhythmic activity of active protractor-retractor CPG networks by individual stepping legs.SIGNIFICANCE STATEMENT We show for the first time that sensory information is transferred not only to the immediate adjacent segmental ganglia but also to those farther away, indicating the existence of a long-range caudo-rostral sensory influence. This influence is dependent on stepping direction but independent of whether the leg is actively or passively moved. We suggest that the sensory information comes from unspecific load signals sensed by cuticle mechanoreceptors (campaniform sensilla) of a leg. Our results provide a neuronal basis for the long-established behavioral rules of insect leg coordination. We thus provide a breakthrough in understanding the neuronal networks underlying multilegged locomotion and open new vistas into the neuronal functional connectivity of multisegmented locomotion systems across the animal kingdom.Keywords: CPG; entrainment; inter-segmental coordination; locomotion; six-legged walking.
000912513 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000912513 588__ $$aDataset connected to DataCite
000912513 7001_ $$0P:(DE-HGF)0$$aToth, Tibor I.$$b1
000912513 7001_ $$0P:(DE-HGF)0$$aBüschges, Ansgar$$b2
000912513 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b3$$eCorresponding author$$ufzj
000912513 77318 $$2Crossref$$3journal-article$$a10.1523/jneurosci.2290-20.2022$$bSociety for Neuroscience$$d2022-05-11$$n24$$p4841-4851$$tThe Journal of Neuroscience$$v42$$x0270-6474$$y2022
000912513 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.2290-20.2022$$gVol. 42, no. 24, p. 4841 - 4851$$n24$$p4841-4851$$tThe journal of neuroscience$$v42$$x0270-6474$$y2022
000912513 8564_ $$uhttps://juser.fz-juelich.de/record/912513/files/Invoice_JNeurosci07798.pdf
000912513 8564_ $$uhttps://juser.fz-juelich.de/record/912513/files/4841.full.pdf$$yPublished on 2022-06-15. Available in OpenAccess from 2022-12-15.
000912513 8564_ $$uhttps://juser.fz-juelich.de/record/912513/files/Post-print.pdf$$yPublished on 2022-06-15. Available in OpenAccess from 2022-12-15.
000912513 8767_ $$8JNeurosci07798$$92022-04-22$$a1200180515$$d2022-04-27$$eHybrid-OA$$jZahlung erfolgt$$zFZJ-2022-01994 ; USD 2295,-
000912513 909CO $$ooai:juser.fz-juelich.de:912513$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000912513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b3$$kFZJ
000912513 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000912513 9141_ $$y2022
000912513 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000912513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000912513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2019$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2019$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000912513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000912513 920__ $$lyes
000912513 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000912513 980__ $$ajournal
000912513 980__ $$aVDB
000912513 980__ $$aI:(DE-Juel1)INM-3-20090406
000912513 980__ $$aAPC
000912513 980__ $$aUNRESTRICTED
000912513 9801_ $$aAPC
000912513 9801_ $$aFullTexts