000912519 001__ 912519 000912519 005__ 20230123110758.0 000912519 0247_ $$2doi$$a10.1177/15459683221124116 000912519 0247_ $$2ISSN$$a0888-4390 000912519 0247_ $$2ISSN$$a1545-9683 000912519 0247_ $$2ISSN$$a1552-6844 000912519 0247_ $$2pmid$$a36124996 000912519 0247_ $$2WOS$$aWOS:000857964900001 000912519 037__ $$aFZJ-2022-05692 000912519 082__ $$a610 000912519 1001_ $$00000-0001-8450-2865$$aWalter, Helene Luise$$b0$$eCorresponding author 000912519 245__ $$aTranscranial-Direct-Current-Stimulation Accelerates Motor Recovery After Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery 000912519 260__ $$aThousand Oaks, Calif.$$bSage$$c2022 000912519 3367_ $$2DRIVER$$aarticle 000912519 3367_ $$2DataCite$$aOutput Types/Journal article 000912519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670931060_31169 000912519 3367_ $$2BibTeX$$aARTICLE 000912519 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000912519 3367_ $$00$$2EndNote$$aJournal Article 000912519 500__ $$apost print angefragt am 07.12. Kein Post-print vorhanden 000912519 520__ $$aBackground: Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity.Objective: In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes.Methods: Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks.Results: Cathodal tDCS at 198 kC/m<sup>2</sup> (220 A/m<sup>2</sup>) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then.Conclusion: Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.Keywords: experimental stroke; functional recovery; microglia; photothrombosis; tDCS. 000912519 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000912519 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000912519 7001_ $$0P:(DE-HGF)0$$aPikhovych, Anton$$b1 000912519 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b2$$ufzj 000912519 7001_ $$0P:(DE-HGF)0$$aRotthues, Steffen$$b3 000912519 7001_ $$0P:(DE-HGF)0$$aBärmann, Johannes$$b4 000912519 7001_ $$0P:(DE-HGF)0$$aBackes, Heiko$$b5 000912519 7001_ $$0P:(DE-Juel1)176651$$aHoehn, Mathias$$b6$$ufzj 000912519 7001_ $$0P:(DE-HGF)0$$aWiedermann, Dirk$$b7 000912519 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8$$ufzj 000912519 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b9$$ufzj 000912519 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b10 000912519 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b11 000912519 773__ $$0PERI:(DE-600)2100545-X$$a10.1177/15459683221124116$$gVol. 36, no. 10-11, p. 701 - 714$$n10-11$$p701 - 714$$tNeurorehabilitation and neural repair$$v36$$x0888-4390$$y2022 000912519 8564_ $$uhttps://juser.fz-juelich.de/record/912519/files/15459683221124116.pdf 000912519 909CO $$ooai:juser.fz-juelich.de:912519$$pVDB 000912519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b2$$kFZJ 000912519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176651$$aForschungszentrum Jülich$$b6$$kFZJ 000912519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ 000912519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ 000912519 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000912519 9141_ $$y2022 000912519 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30 000912519 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30 000912519 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-09$$wger 000912519 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09 000912519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09 000912519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09 000912519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09 000912519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROREHAB NEURAL RE : 2021$$d2022-11-09 000912519 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-09 000912519 920__ $$lyes 000912519 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000912519 980__ $$ajournal 000912519 980__ $$aVDB 000912519 980__ $$aI:(DE-Juel1)INM-3-20090406 000912519 980__ $$aUNRESTRICTED