001     912519
005     20230123110758.0
024 7 _ |a 10.1177/15459683221124116
|2 doi
024 7 _ |a 0888-4390
|2 ISSN
024 7 _ |a 1545-9683
|2 ISSN
024 7 _ |a 1552-6844
|2 ISSN
024 7 _ |a 36124996
|2 pmid
024 7 _ |a WOS:000857964900001
|2 WOS
037 _ _ |a FZJ-2022-05692
082 _ _ |a 610
100 1 _ |a Walter, Helene Luise
|0 0000-0001-8450-2865
|b 0
|e Corresponding author
245 _ _ |a Transcranial-Direct-Current-Stimulation Accelerates Motor Recovery After Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery
260 _ _ |a Thousand Oaks, Calif.
|c 2022
|b Sage
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670931060_31169
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a post print angefragt am 07.12. Kein Post-print vorhanden
520 _ _ |a Background: Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity.Objective: In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes.Methods: Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks.Results: Cathodal tDCS at 198 kC/m2 (220 A/m2) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then.Conclusion: Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.Keywords: experimental stroke; functional recovery; microglia; photothrombosis; tDCS.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pikhovych, Anton
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Endepols, Heike
|0 P:(DE-Juel1)180330
|b 2
|u fzj
700 1 _ |a Rotthues, Steffen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bärmann, Johannes
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Backes, Heiko
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hoehn, Mathias
|0 P:(DE-Juel1)176651
|b 6
|u fzj
700 1 _ |a Wiedermann, Dirk
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 8
|u fzj
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 9
|u fzj
700 1 _ |a Rueger, Maria Adele
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schroeter, Michael
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1177/15459683221124116
|g Vol. 36, no. 10-11, p. 701 - 714
|0 PERI:(DE-600)2100545-X
|n 10-11
|p 701 - 714
|t Neurorehabilitation and neural repair
|v 36
|y 2022
|x 0888-4390
856 4 _ |u https://juser.fz-juelich.de/record/912519/files/15459683221124116.pdf
909 C O |o oai:juser.fz-juelich.de:912519
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176651
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROREHAB NEURAL RE : 2021
|d 2022-11-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21