001     912526
005     20230123110758.0
024 7 _ |a 10.1038/s41746-022-00677-8
|2 doi
024 7 _ |a 2128/33089
|2 Handle
024 7 _ |a 36109583
|2 pmid
024 7 _ |a WOS:000854756700001
|2 WOS
037 _ _ |a FZJ-2022-05699
082 _ _ |a 610
100 1 _ |a Kambeitz-Ilankovic, Lana
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A systematic review of digital and face-to-face cognitive behavioral therapy for depression
260 _ _ |a [Basingstoke]
|c 2022
|b Macmillan Publishers Limited
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670999186_23230
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cognitive behavioral therapy (CBT) represents one of the major treatment options for depressive disorders besides pharmacological interventions. While newly developed digital CBT approaches hold important advantages due to higher accessibility, their relative effectiveness compared to traditional CBT remains unclear. We conducted a systematic literature search to identify all studies that conducted a CBT-based intervention (face-to-face or digital) in patients with major depression. Random-effects meta-analytic models of the standardized mean change using raw score standardization (SMCR) were computed. In 106 studies including n = 11854 patients face-to-face CBT shows superior clinical effectiveness compared to digital CBT when investigating depressive symptoms (p < 0.001, face-to-face CBT: SMCR = 1.97, 95%-CI: 1.74–2.13, digital CBT: SMCR = 1.20, 95%-CI: 1.08–1.32) and adherence (p = 0.014, face-to-face CBT: 82.4%, digital CBT: 72.9%). However, after accounting for differences between face-to-face and digital CBT studies, both approaches indicate similar effectiveness. Important variables with significant moderation effects include duration of the intervention, baseline severity, adherence and the level of human guidance in digital CBT interventions. After accounting for potential confounders our analysis indicates comparable effectiveness of face-to-face and digital CBT approaches. These findings underline the importance of moderators of clinical effects and provide a basis for the future personalization of CBT treatment in depression.Subject terms: Depression, Randomized controlled trials
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rzayeva, Uma
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Völkel, Laura
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wenzel, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weiske, Johanna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jessen, Frank
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Reininghaus, Ulrich
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Uhlhaas, Peter J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Alvarez-Jimenez, Mario
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kambeitz, Joseph
|0 P:(DE-Juel1)188257
|b 9
|e Corresponding author
773 _ _ |a 10.1038/s41746-022-00677-8
|g Vol. 5, no. 1, p. 144
|0 PERI:(DE-600)2925182-5
|n 1
|p 144
|t npj digital medicine
|v 5
|y 2022
|x 2398-6352
856 4 _ |u https://juser.fz-juelich.de/record/912526/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912526
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)188257
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:28:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:28:38Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:28:38Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21