Optimizing Spiking Neural Networks with L2L on HPC systems

End of year colloquium

December 8, 2022 | Alper Yeğenoğlu^{1,2} |

- 1. SDL Neuroscience, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
- 2. Institute of Geometry and Applied Mathematics, Department of Mathematics, RWTH Aachen a.yegenoglu@fz-juelich.de

Neurons and Action Potentials

Neurons and Action Potentials

Neurons and Action Potentials

Spiking Neural Network (SNN)

[Lobo et al., Neural Networks 121, 2020]

Gradient Descent not applicable on SNNs

Forward pass of activity Output $h_j W_{jk} h_k W_{kl}$ $h_k = f(a_k)$ $a_k = \sum_j h_j W_{jk}$ Backward pass of errors

[Lillicrap et al., Nature Reviews NS, 2020]

https://rasbt.github.io/mlxtend

Gradient Descent not applicable on SNNs

[Lillicrap et al., Nature Reviews NS, 2020]

https://rasbt.github.io/mlxtend

Step function over spike. Gradient descent and backprop not possible.

Gradient Descent Issues with ANNs

- Problem of Vanishing and Exploding Gradients
- In backpropagation step \rightarrow zero or huge gradients

[Yegenoglu et al., LOD 2020]

Problem depends on:

- Initialization of weights e.g. $w_{i,j} \sim \mathcal{N}(0,1)$
- Activation Functions

Logistic Function:
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Member of the Helmholtz Association December 8, 2022 Slide 4 Fors

Optimization with Learning to Learn

Learning to Learn (L2L)

- Generalization on new data sets via experience
- Parameter space exploration
- Variety of optimization algorithms
- e.g. ensemble Kalman filter (EnKF)

[Yegenoglu et al., Front. Comput. Neurosci. 2022]

Optimization with Learning to Learn

[Yegenoglu et al., Front. Comput. Neurosci. 2022]

Learning to Learn (L2L)

- Generalization on new data sets via experience
- Parameter space exploration
- Variety of optimization algorithms
- e.g. ensemble Kalman filter (EnKF)

December 8, 2022

Kalman Filter - Intuition

[https://en.wikipedia.org/wiki/Kalman_filter] modified

Classification with EnKF

- MNIST & Letter dataset
- Logistic function
- Optimizer: EnKF
- [Yegenoglu et al., LOD 2020]

Classification with EnKF

- MNIST & Letter dataset
- Logistic function
- · Optimizer: EnKF
- [Yegenoglu et al., LOD 2020]

Reservoir Computing

[Avesani et al., Neural Networks 2015]

- fixed reservoir
- connections to output are trained
- here: input encoded into firing rates

Optimizing with L2L a Spiking Reservoir

Reservoir Fitness

- 98 individuals
- connection weights optimized
- 7 nodes à 16 tasks

Reservoir Fitness

- 98 individuals
- connection weights optimized
- 7 nodes à 16 tasks

Swarm Optimization

- Foraging for food and avoiding obstacles
- Collaboration and communication
- Evolution over (long) time/generations

Swarm Optimization

- Foraging for food and avoiding obstacles
- · Collaboration and communication
- Evolution over (long) time/generations
- here: optimize agents to help Nikolaus to collect presents

Setting – Agents

Setting – Network

Member of the Helmholtz Association

Optimization

Video

Outlook

- Extend to different datasets
- Learning parameter mapping with ANNs (e.g. auto-encoder)
- Neuro-architecture search with evolutionary algorithms (neuroevolution)
- Swarm evolution using stigmergy: ants (multiple pheromones), drones

Summary

· Training SNNs is not straightforward

Summary

Training SNNs is not straightforward

Optimization via L2L and EnKF

Summary

· Training SNNs is not straightforward

Optimization via L2L and EnKF

Different learning tasks/applications

Slide 17

Abigail Morrison Sandra Diaz Pier Kai Krajsek Cristian Jimenez Romero

Michael Herty Giuseppe Visconti

Thank you for your attention and a merry Christmas & a happy new year

contact: a.yegenoglu@fz-juelich.de

Member of the Helmholtz Association December 8, 2022 Slide 18