000912540 001__ 912540 000912540 005__ 20240129202805.0 000912540 0247_ $$2doi$$a10.1007/s00415-022-11326-1 000912540 0247_ $$2ISSN$$a0012-1037 000912540 0247_ $$2ISSN$$a0340-5354 000912540 0247_ $$2ISSN$$a0939-1517 000912540 0247_ $$2ISSN$$a1432-1459 000912540 0247_ $$2ISSN$$a1619-800X 000912540 0247_ $$2Handle$$a2128/33856 000912540 0247_ $$2pmid$$a36180649 000912540 0247_ $$2WOS$$aWOS:000862218800001 000912540 037__ $$aFZJ-2022-05713 000912540 082__ $$a610 000912540 1001_ $$0P:(DE-HGF)0$$aSprenger-Svačina, Alina$$b0 000912540 245__ $$aMRI correlates of motoneuron loss in SMA 000912540 260__ $$aHeidelberg$$bSpringer$$c2023 000912540 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2022-10-01 000912540 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2023-01-01 000912540 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2023-01-01 000912540 3367_ $$2DRIVER$$aarticle 000912540 3367_ $$2DataCite$$aOutput Types/Journal article 000912540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706531782_11227 000912540 3367_ $$2BibTeX$$aARTICLE 000912540 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000912540 3367_ $$00$$2EndNote$$aJournal Article 000912540 520__ $$aBackgroundMagnetic resonance imaging (MRI) is currently explored as supplemental tool to monitor disease progression and treatment response in various neuromuscular disorders. We here assessed the utility of a multi-parametric magnetic resonance imaging (MRI) protocol including quantitative water T2 mapping, Dixon-based proton density fat fraction (PDFF) estimation and diffusion tensor imaging (DTI) to detect loss of spinal motor neurons and subsequent muscle damage in adult SMA patients.MethodsSixteen SMA patients and 13 age-matched controls were enrolled in this prospective, longitudinal study. All participants underwent MRI imaging including measurements of Dixon-based PDFF and DTI of the sciatic nerve. SMA patients furthermore underwent measurements of muscle water T2 (T2w) of the biceps femoris muscle (BFM) and quadriceps femoris muscle (QFM). Ten participants returned for a second scan six months later. MRI parameter were correlated with clinical data. All patients were on nusinersen treatment.ResultsThere were significantly higher intramuscular fat fractions in the BFM and QFM of SMA patients compared to healthy controls at baseline and after 6 months. Furthermore, T2 values significantly correlated positively with intramuscular fat fractions. The Hammersmith functional motor scale significantly correlated with the QFM’s intramuscular fat fractions. DTI scans of the sciatic nerve were not significantly different between the two groups.ConclusionThis study demonstrates that, water T2 mapping and Dixon-based PDFF estimation may distinguish between adult SMA patients and controls, due to massive intramuscular fat accumulation in SMA. More extensive long-term studies are warranted to further evaluate these two modalities as surrogate markers in SMA patients during treatment. 000912540 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000912540 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1 000912540 542__ $$2Crossref$$i2022-10-01$$uhttps://creativecommons.org/licenses/by/4.0 000912540 542__ $$2Crossref$$i2022-10-01$$uhttps://creativecommons.org/licenses/by/4.0 000912540 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000912540 7001_ $$0P:(DE-HGF)0$$aHaensch, Johannes$$b1 000912540 7001_ $$0P:(DE-HGF)0$$aWeiss, Kilian$$b2 000912540 7001_ $$0P:(DE-HGF)0$$aGroße Hokamp, Nils$$b3 000912540 7001_ $$0P:(DE-HGF)0$$aMaintz, David$$b4 000912540 7001_ $$0P:(DE-HGF)0$$aSchlamann, Marc$$b5 000912540 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b6$$ufzj 000912540 7001_ $$0P:(DE-HGF)0$$aSchloss, Natalie$$b7 000912540 7001_ $$0P:(DE-HGF)0$$aLaukamp, Kai$$b8 000912540 7001_ $$0P:(DE-HGF)0$$aWunderlich, Gilbert$$b9 000912540 7001_ $$00000-0001-6205-2293$$aLehmann, Helmar C.$$b10$$eCorresponding author 000912540 7001_ $$0P:(DE-HGF)0$$aLichtenstein, Thorsten$$b11 000912540 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-022-11326-1$$bSpringer Science and Business Media LLC$$d2022-10-01$$n1$$p503-510$$tJournal of Neurology$$v270$$x0340-5354$$y2022 000912540 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-022-11326-1$$n1$$p503-510$$tJournal of neurology$$v270$$x0367-004x$$y2023 000912540 8564_ $$uhttps://juser.fz-juelich.de/record/912540/files/PDF.pdf$$yOpenAccess 000912540 909CO $$ooai:juser.fz-juelich.de:912540$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access 000912540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ 000912540 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000912540 9141_ $$y2023 000912540 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000912540 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000912540 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-12$$wger 000912540 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-12$$wger 000912540 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12 000912540 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12 000912540 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12 000912540 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger 000912540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2022$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21 000912540 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROL : 2022$$d2023-10-21 000912540 920__ $$lyes 000912540 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000912540 980__ $$ajournal 000912540 980__ $$aVDB 000912540 980__ $$aI:(DE-Juel1)INM-3-20090406 000912540 980__ $$aUNRESTRICTED 000912540 9801_ $$aFullTexts 000912540 999C5 $$1E Mercuri$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2017.11.005$$p103 -$$tNeuromuscul Disord$$uMercuri E, Finkel RS, Muntoni F et al (2018) Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28:103–115. https://doi.org/10.1016/j.nmd.2017.11.005$$v28$$y2018 000912540 999C5 $$1DC Malone$$2Crossref$$9-- missing cx lookup --$$a10.1080/20016689.2019.1601484$$p1601484 -$$tJ Mark Access Heal Policy$$uMalone DC, Dean R, Arjunji R et al (2019) Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Heal Policy 7:1601484. https://doi.org/10.1080/20016689.2019.1601484$$v7$$y2019 000912540 999C5 $$1O Dabbous$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12325-019-00923-8$$tAdv Ther$$uDabbous O, Maru B, Jansen JP et al (2019) Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv Ther. https://doi.org/10.1007/s12325-019-00923-8$$y2019 000912540 999C5 $$1RS Finkel$$2Crossref$$9-- missing cx lookup --$$a10.1056/nejmoa1702752$$p1723 -$$tN Engl J Med$$uFinkel RS, Mercuri E, Darras BT et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377:1723–1732. https://doi.org/10.1056/nejmoa1702752$$v377$$y2017 000912540 999C5 $$1S Messina$$2Crossref$$9-- missing cx lookup --$$a10.3390/jcm9072222$$p2222 -$$tJ Clin Med$$uMessina S, Sframeli M (2020) New treatments in spinal muscular atrophy: positive results and new challenges. J Clin Med 9:2222. https://doi.org/10.3390/jcm9072222$$v9$$y2020 000912540 999C5 $$1B Stolte$$2Crossref$$9-- missing cx lookup --$$a10.1111/ene.14472$$p2586 -$$tEur J Neurol$$uStolte B, Bois JM, Bolz S et al (2020) Minimal clinically important differences in functional motor scores in adults with spinal muscular atrophy. Eur J Neurol 27:2586–2594. https://doi.org/10.1111/ene.14472$$v27$$y2020 000912540 999C5 $$1D Ramsey$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0172346$$tPLoS ONE$$uRamsey D, Scoto M, Mayhew A et al (2017) Revised Hammersmith Scale for spinal muscular atrophy: a SMA specific clinical outcome assessment tool. PLoS ONE. https://doi.org/10.1371/journal.pone.0172346$$y2017 000912540 999C5 $$1C Brogna$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09646-w$$p898 -$$tJ Neurol$$uBrogna C, Cristiano L, Verdolotti T et al (2020) MRI patterns of muscle involvement in type 2 and 3 spinal muscular atrophy patients. J Neurol 267:898–912. https://doi.org/10.1007/s00415-019-09646-w$$v267$$y2020 000912540 999C5 $$1LAM Otto$$2Crossref$$9-- missing cx lookup --$$a10.1002/NBM.4357$$tNmr Biomed$$uOtto LAM, van der Pol W, Schlaffke L et al (2020) Quantitative MRI of skeletal muscle in a cross-sectional cohort of patients with spinal muscular atrophy types 2 and 3. Nmr Biomed. https://doi.org/10.1002/NBM.4357$$y2020 000912540 999C5 $$1A Chabanon$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0201004$$tPLoS ONE$$uChabanon A, Seferian AM, Daron A et al (2018) Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: baseline data NatHis-SMA study. PLoS ONE. https://doi.org/10.1371/journal.pone.0201004$$y2018 000912540 999C5 $$1U Bonati$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.406$$p292 -$$tAnn Clin Transl Neurol$$uBonati U, Holiga Š, Hellbach N et al (2017) Longitudinal characterization of biomarkers for spinal muscular atrophy. Ann Clin Transl Neurol 4:292–304. https://doi.org/10.1002/acn3.406$$v4$$y2017 000912540 999C5 $$1A Mankodi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2016.07.013$$p650 -$$tNeuromuscul Disord$$uMankodi A, Bishop CA, Auh S et al (2016) Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord 26:650–658. https://doi.org/10.1016/j.nmd.2016.07.013$$v26$$y2016 000912540 999C5 $$1PG Carlier$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2014.02.009$$p390 -$$tNeuromuscul Disord$$uCarlier PG (2014) Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: Different methodology, different information and different implications. Neuromuscul Disord 24:390–392. https://doi.org/10.1016/j.nmd.2014.02.009$$v24$$y2014 000912540 999C5 $$1T Lichtenstein$$2Crossref$$9-- missing cx lookup --$$a10.1002/acn3.502$$p19 -$$tAnn Clin Transl Neurol$$uLichtenstein T, Sprenger A, Weiss K et al (2018) MRI biomarkers of proximal nerve injury in CIDP. Ann Clin Transl Neurol 5:19–28. https://doi.org/10.1002/acn3.502$$v5$$y2018 000912540 999C5 $$1T Ishikawa$$2Crossref$$9-- missing cx lookup --$$a10.1002/mus.25368$$p483 -$$tMuscle Nerve$$uIshikawa T, Asakura K, Mizutani Y et al (2017) MR neurography for the evaluation of CIDP. Muscle Nerve 55:483–489. https://doi.org/10.1002/mus.25368$$v55$$y2017 000912540 999C5 $$1P Bäumer$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.14132837$$p185 -$$tRadiology$$uBäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193. https://doi.org/10.1148/radiol.14132837$$v273$$y2014 000912540 999C5 $$1R Guggenberger$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.12111403$$p194 -$$tRadiology$$uGuggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203. https://doi.org/10.1148/radiol.12111403$$v265$$y2012 000912540 999C5 $$1C Schneider$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09224-0$$p975 -$$tJ Neurol$$uSchneider C, Sprenger A, Weiss K et al (2019) MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN). J Neurol 266:975–981. https://doi.org/10.1007/s00415-019-09224-0$$v266$$y2019 000912540 999C5 $$1T Lichtenstein$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnins.2021.682126$$tFront Neurosci$$uLichtenstein T, Sprenger A, Weiss K et al (2021) MRI DTI and PDFF as biomarkers for lower motor neuron degeneration in ALS. Front Neurosci. https://doi.org/10.3389/fnins.2021.682126$$y2021 000912540 999C5 $$1A Barp$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jns.2020.117067$$tJ Neurol Sci$$uBarp A, Carraro E, Albamonte E et al (2020) Muscle MRI in two SMA patients on nusinersen treatment: a two years follow-up. J Neurol Sci 417:117067. https://doi.org/10.1016/j.jns.2020.117067$$v417$$y2020 000912540 999C5 $$1E Mazzone$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2014.01.003$$p347 -$$tNeuromuscul Disord$$uMazzone E, De Sanctis R, Fanelli L et al (2014) Hammersmith functional motor scale and motor function measure-20 in non ambulant SMA patients. Neuromuscul Disord 24:347–352. https://doi.org/10.1016/j.nmd.2014.01.003$$v24$$y2014 000912540 999C5 $$1JM Kasper$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00330-014-3552-8$$p1672 -$$tEur Radiol$$uKasper JM, Wadhwa V, Scott KM et al (2015) SHINKEI—a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 25:1672–1677. https://doi.org/10.1007/s00330-014-3552-8$$v25$$y2015 000912540 999C5 $$1B Cervantes$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.25076$$p789 -$$tJ Magn Reson Imaging$$uCervantes B, Bauer JS, Zibold F et al (2016) Imaging of the lumbar plexus: optimized refocusing flip angle train design for 3D TSE. J Magn Reson Imaging 43:789–799. https://doi.org/10.1002/jmri.25076$$v43$$y2016 000912540 999C5 $$1J Kollmer$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00062-015-0412-0$$p283 -$$tClin Neuroradiol$$uKollmer J, Bendszus M, Pham M (2015) MR neurography: diagnostic imaging in the PNS. Clin Neuroradiol 25:283–289. https://doi.org/10.1007/s00062-015-0412-0$$v25$$y2015 000912540 999C5 $$1D Fischer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2016.04.009$$p414 -$$tNeuromuscul Disord$$uFischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure and quantitative thigh muscle MRI in Becker muscular dystrophy: a cross-sectional study. Neuromuscul Disord 26:414–422. https://doi.org/10.1016/j.nmd.2016.04.009$$v26$$y2016 000912540 999C5 $$1S Schlaeger$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.27032$$p1727 -$$tJ Magn Reson Imaging$$uSchlaeger S, Weidlich D, Klupp E et al (2020) Water T2 mapping in fatty infiltrated thigh muscles of patients with neuromuscular diseases using a T2-prepared 3D turbo spin echo with SPAIR. J Magn Reson Imaging 51:1727–1736. https://doi.org/10.1002/jmri.27032$$v51$$y2020 000912540 999C5 $$1AL Nash$$2Crossref$$9-- missing cx lookup --$$a10.2174/1566524016666161128113338$$p779 -$$tCurr Mol Med$$uNash AL, Burns KJ, Warman Chardon J et al (2017) Spinal muscular atrophy: more than a disease of motor neurons? Curr Mol Med 16:779–792. https://doi.org/10.2174/1566524016666161128113338$$v16$$y2017 000912540 999C5 $$1PG Carlier$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10545-015-9825-9$$p565 -$$tJ Inherit Metab Dis$$uCarlier PG, Azzabou N, de Sousa PL et al (2015) Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients. J Inherit Metab Dis 38:565–572. https://doi.org/10.1007/s10545-015-9825-9$$v38$$y2015 000912540 999C5 $$1H Reyngoudt$$2Crossref$$9-- missing cx lookup --$$a10.21037/QIMS-20-39$$tQuant Imaging Med Surg$$uReyngoudt H, Marty B, De Almeida Araújo EC et al (2020) Relationship between markers of disease activity and progression in skeletal muscle of GNE myopathy patients using quantitative nuclear magnetic resonance imaging and 31P nuclear magnetic resonance spectroscopy. Quant Imaging Med Surg. https://doi.org/10.21037/QIMS-20-39$$y2020 000912540 999C5 $$1HC Lehmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.expneurol.2009.10.012$$p238 -$$tExp Neurol$$uLehmann HC, Zhang J, Mori S, Sheikh KA (2010) Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 223:238–244. https://doi.org/10.1016/j.expneurol.2009.10.012$$v223$$y2010 000912540 999C5 $$1H Schmalbruch$$2Crossref$$9-- missing cx lookup --$$a10.1002/ar.1092150111$$p71 -$$tAnat Rec$$uSchmalbruch H (1986) Fiber composition of the rat sciatic nerve. Anat Rec 215:71–81$$v215$$y1986 000912540 999C5 $$1KA Cauley$$2Crossref$$9-- missing cx lookup --$$a10.2214/AJR.12.9230$$tAm J Roentgenol$$uCauley KA, Filippi CG (2013) Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots—clinical applications. Am J Roentgenol. https://doi.org/10.2214/AJR.12.9230$$y2013 000912540 999C5 $$1C Khalil$$2Crossref$$9-- missing cx lookup --$$a10.1007/S00330-008-0971-4/FIGURES/6$$p2283 -$$tEur Radiol$$uKhalil C, Hancart C, Le Thuc V et al (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291. https://doi.org/10.1007/S00330-008-0971-4/FIGURES/6$$v18$$y2008 000912540 999C5 $$1DC Schorling$$2Crossref$$9-- missing cx lookup --$$a10.3233/JND-190424$$p1 -$$tJ Neuromuscul Dis$$uSchorling DC, Pechmann A, Kirschner J (2020) Advances in treatment of spinal muscular atrophy—new phenotypes, new challenges, new implications for care. J Neuromuscul Dis 7:1. https://doi.org/10.3233/JND-190424$$v7$$y2020