001     912540
005     20240129202805.0
024 7 _ |a 10.1007/s00415-022-11326-1
|2 doi
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 0939-1517
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 1619-800X
|2 ISSN
024 7 _ |a 2128/33856
|2 Handle
024 7 _ |a 36180649
|2 pmid
024 7 _ |a WOS:000862218800001
|2 WOS
037 _ _ |a FZJ-2022-05713
082 _ _ |a 610
100 1 _ |a Sprenger-Svačina, Alina
|0 P:(DE-HGF)0
|b 0
245 _ _ |a MRI correlates of motoneuron loss in SMA
260 _ _ |a Heidelberg
|c 2023
|b Springer
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2022-10-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2023-01-01
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2023-01-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706531782_11227
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundMagnetic resonance imaging (MRI) is currently explored as supplemental tool to monitor disease progression and treatment response in various neuromuscular disorders. We here assessed the utility of a multi-parametric magnetic resonance imaging (MRI) protocol including quantitative water T2 mapping, Dixon-based proton density fat fraction (PDFF) estimation and diffusion tensor imaging (DTI) to detect loss of spinal motor neurons and subsequent muscle damage in adult SMA patients.MethodsSixteen SMA patients and 13 age-matched controls were enrolled in this prospective, longitudinal study. All participants underwent MRI imaging including measurements of Dixon-based PDFF and DTI of the sciatic nerve. SMA patients furthermore underwent measurements of muscle water T2 (T2w) of the biceps femoris muscle (BFM) and quadriceps femoris muscle (QFM). Ten participants returned for a second scan six months later. MRI parameter were correlated with clinical data. All patients were on nusinersen treatment.ResultsThere were significantly higher intramuscular fat fractions in the BFM and QFM of SMA patients compared to healthy controls at baseline and after 6 months. Furthermore, T2 values significantly correlated positively with intramuscular fat fractions. The Hammersmith functional motor scale significantly correlated with the QFM’s intramuscular fat fractions. DTI scans of the sciatic nerve were not significantly different between the two groups.ConclusionThis study demonstrates that, water T2 mapping and Dixon-based PDFF estimation may distinguish between adult SMA patients and controls, due to massive intramuscular fat accumulation in SMA. More extensive long-term studies are warranted to further evaluate these two modalities as surrogate markers in SMA patients during treatment.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a DFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)
|0 G:(GEPRIS)431549029
|c 431549029
|x 1
542 _ _ |i 2022-10-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2022-10-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Haensch, Johannes
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weiss, Kilian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Große Hokamp, Nils
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Maintz, David
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schlamann, Marc
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 6
|u fzj
700 1 _ |a Schloss, Natalie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Laukamp, Kai
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wunderlich, Gilbert
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lehmann, Helmar C.
|0 0000-0001-6205-2293
|b 10
|e Corresponding author
700 1 _ |a Lichtenstein, Thorsten
|0 P:(DE-HGF)0
|b 11
773 1 8 |a 10.1007/s00415-022-11326-1
|b Springer Science and Business Media LLC
|d 2022-10-01
|n 1
|p 503-510
|3 journal-article
|2 Crossref
|t Journal of Neurology
|v 270
|y 2022
|x 0340-5354
773 _ _ |a 10.1007/s00415-022-11326-1
|0 PERI:(DE-600)1421299-7
|n 1
|p 503-510
|t Journal of neurology
|v 270
|y 2023
|x 0367-004x
856 4 _ |u https://juser.fz-juelich.de/record/912540/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912540
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROL : 2022
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.nmd.2017.11.005
|9 -- missing cx lookup --
|1 E Mercuri
|p 103 -
|2 Crossref
|u Mercuri E, Finkel RS, Muntoni F et al (2018) Diagnosis and management of spinal muscular atrophy: Part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 28:103–115. https://doi.org/10.1016/j.nmd.2017.11.005
|t Neuromuscul Disord
|v 28
|y 2018
999 C 5 |a 10.1080/20016689.2019.1601484
|9 -- missing cx lookup --
|1 DC Malone
|p 1601484 -
|2 Crossref
|u Malone DC, Dean R, Arjunji R et al (2019) Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Heal Policy 7:1601484. https://doi.org/10.1080/20016689.2019.1601484
|t J Mark Access Heal Policy
|v 7
|y 2019
999 C 5 |a 10.1007/s12325-019-00923-8
|1 O Dabbous
|9 -- missing cx lookup --
|2 Crossref
|u Dabbous O, Maru B, Jansen JP et al (2019) Survival, motor function, and motor milestones: comparison of AVXS-101 relative to nusinersen for the treatment of infants with spinal muscular atrophy type 1. Adv Ther. https://doi.org/10.1007/s12325-019-00923-8
|t Adv Ther
|y 2019
999 C 5 |a 10.1056/nejmoa1702752
|9 -- missing cx lookup --
|1 RS Finkel
|p 1723 -
|2 Crossref
|u Finkel RS, Mercuri E, Darras BT et al (2017) Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 377:1723–1732. https://doi.org/10.1056/nejmoa1702752
|t N Engl J Med
|v 377
|y 2017
999 C 5 |a 10.3390/jcm9072222
|9 -- missing cx lookup --
|1 S Messina
|p 2222 -
|2 Crossref
|u Messina S, Sframeli M (2020) New treatments in spinal muscular atrophy: positive results and new challenges. J Clin Med 9:2222. https://doi.org/10.3390/jcm9072222
|t J Clin Med
|v 9
|y 2020
999 C 5 |a 10.1111/ene.14472
|9 -- missing cx lookup --
|1 B Stolte
|p 2586 -
|2 Crossref
|u Stolte B, Bois JM, Bolz S et al (2020) Minimal clinically important differences in functional motor scores in adults with spinal muscular atrophy. Eur J Neurol 27:2586–2594. https://doi.org/10.1111/ene.14472
|t Eur J Neurol
|v 27
|y 2020
999 C 5 |a 10.1371/journal.pone.0172346
|1 D Ramsey
|9 -- missing cx lookup --
|2 Crossref
|u Ramsey D, Scoto M, Mayhew A et al (2017) Revised Hammersmith Scale for spinal muscular atrophy: a SMA specific clinical outcome assessment tool. PLoS ONE. https://doi.org/10.1371/journal.pone.0172346
|t PLoS ONE
|y 2017
999 C 5 |a 10.1007/s00415-019-09646-w
|9 -- missing cx lookup --
|1 C Brogna
|p 898 -
|2 Crossref
|u Brogna C, Cristiano L, Verdolotti T et al (2020) MRI patterns of muscle involvement in type 2 and 3 spinal muscular atrophy patients. J Neurol 267:898–912. https://doi.org/10.1007/s00415-019-09646-w
|t J Neurol
|v 267
|y 2020
999 C 5 |a 10.1002/NBM.4357
|1 LAM Otto
|9 -- missing cx lookup --
|2 Crossref
|u Otto LAM, van der Pol W, Schlaffke L et al (2020) Quantitative MRI of skeletal muscle in a cross-sectional cohort of patients with spinal muscular atrophy types 2 and 3. Nmr Biomed. https://doi.org/10.1002/NBM.4357
|t Nmr Biomed
|y 2020
999 C 5 |a 10.1371/journal.pone.0201004
|1 A Chabanon
|9 -- missing cx lookup --
|2 Crossref
|u Chabanon A, Seferian AM, Daron A et al (2018) Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: baseline data NatHis-SMA study. PLoS ONE. https://doi.org/10.1371/journal.pone.0201004
|t PLoS ONE
|y 2018
999 C 5 |a 10.1002/acn3.406
|9 -- missing cx lookup --
|1 U Bonati
|p 292 -
|2 Crossref
|u Bonati U, Holiga Š, Hellbach N et al (2017) Longitudinal characterization of biomarkers for spinal muscular atrophy. Ann Clin Transl Neurol 4:292–304. https://doi.org/10.1002/acn3.406
|t Ann Clin Transl Neurol
|v 4
|y 2017
999 C 5 |a 10.1016/j.nmd.2016.07.013
|9 -- missing cx lookup --
|1 A Mankodi
|p 650 -
|2 Crossref
|u Mankodi A, Bishop CA, Auh S et al (2016) Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord 26:650–658. https://doi.org/10.1016/j.nmd.2016.07.013
|t Neuromuscul Disord
|v 26
|y 2016
999 C 5 |a 10.1016/j.nmd.2014.02.009
|9 -- missing cx lookup --
|1 PG Carlier
|p 390 -
|2 Crossref
|u Carlier PG (2014) Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: Different methodology, different information and different implications. Neuromuscul Disord 24:390–392. https://doi.org/10.1016/j.nmd.2014.02.009
|t Neuromuscul Disord
|v 24
|y 2014
999 C 5 |a 10.1002/acn3.502
|9 -- missing cx lookup --
|1 T Lichtenstein
|p 19 -
|2 Crossref
|u Lichtenstein T, Sprenger A, Weiss K et al (2018) MRI biomarkers of proximal nerve injury in CIDP. Ann Clin Transl Neurol 5:19–28. https://doi.org/10.1002/acn3.502
|t Ann Clin Transl Neurol
|v 5
|y 2018
999 C 5 |a 10.1002/mus.25368
|9 -- missing cx lookup --
|1 T Ishikawa
|p 483 -
|2 Crossref
|u Ishikawa T, Asakura K, Mizutani Y et al (2017) MR neurography for the evaluation of CIDP. Muscle Nerve 55:483–489. https://doi.org/10.1002/mus.25368
|t Muscle Nerve
|v 55
|y 2017
999 C 5 |a 10.1148/radiol.14132837
|9 -- missing cx lookup --
|1 P Bäumer
|p 185 -
|2 Crossref
|u Bäumer P, Pham M, Ruetters M et al (2014) Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology 273:185–193. https://doi.org/10.1148/radiol.14132837
|t Radiology
|v 273
|y 2014
999 C 5 |a 10.1148/radiol.12111403
|9 -- missing cx lookup --
|1 R Guggenberger
|p 194 -
|2 Crossref
|u Guggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203. https://doi.org/10.1148/radiol.12111403
|t Radiology
|v 265
|y 2012
999 C 5 |a 10.1007/s00415-019-09224-0
|9 -- missing cx lookup --
|1 C Schneider
|p 975 -
|2 Crossref
|u Schneider C, Sprenger A, Weiss K et al (2019) MRI detects peripheral nerve and adjacent muscle pathology in non-systemic vasculitic neuropathy (NSVN). J Neurol 266:975–981. https://doi.org/10.1007/s00415-019-09224-0
|t J Neurol
|v 266
|y 2019
999 C 5 |a 10.3389/fnins.2021.682126
|1 T Lichtenstein
|9 -- missing cx lookup --
|2 Crossref
|u Lichtenstein T, Sprenger A, Weiss K et al (2021) MRI DTI and PDFF as biomarkers for lower motor neuron degeneration in ALS. Front Neurosci. https://doi.org/10.3389/fnins.2021.682126
|t Front Neurosci
|y 2021
999 C 5 |a 10.1016/j.jns.2020.117067
|1 A Barp
|9 -- missing cx lookup --
|2 Crossref
|u Barp A, Carraro E, Albamonte E et al (2020) Muscle MRI in two SMA patients on nusinersen treatment: a two years follow-up. J Neurol Sci 417:117067. https://doi.org/10.1016/j.jns.2020.117067
|t J Neurol Sci
|v 417
|y 2020
999 C 5 |a 10.1016/j.nmd.2014.01.003
|9 -- missing cx lookup --
|1 E Mazzone
|p 347 -
|2 Crossref
|u Mazzone E, De Sanctis R, Fanelli L et al (2014) Hammersmith functional motor scale and motor function measure-20 in non ambulant SMA patients. Neuromuscul Disord 24:347–352. https://doi.org/10.1016/j.nmd.2014.01.003
|t Neuromuscul Disord
|v 24
|y 2014
999 C 5 |a 10.1007/s00330-014-3552-8
|9 -- missing cx lookup --
|1 JM Kasper
|p 1672 -
|2 Crossref
|u Kasper JM, Wadhwa V, Scott KM et al (2015) SHINKEI—a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 25:1672–1677. https://doi.org/10.1007/s00330-014-3552-8
|t Eur Radiol
|v 25
|y 2015
999 C 5 |a 10.1002/jmri.25076
|9 -- missing cx lookup --
|1 B Cervantes
|p 789 -
|2 Crossref
|u Cervantes B, Bauer JS, Zibold F et al (2016) Imaging of the lumbar plexus: optimized refocusing flip angle train design for 3D TSE. J Magn Reson Imaging 43:789–799. https://doi.org/10.1002/jmri.25076
|t J Magn Reson Imaging
|v 43
|y 2016
999 C 5 |a 10.1007/s00062-015-0412-0
|9 -- missing cx lookup --
|1 J Kollmer
|p 283 -
|2 Crossref
|u Kollmer J, Bendszus M, Pham M (2015) MR neurography: diagnostic imaging in the PNS. Clin Neuroradiol 25:283–289. https://doi.org/10.1007/s00062-015-0412-0
|t Clin Neuroradiol
|v 25
|y 2015
999 C 5 |a 10.1016/j.nmd.2016.04.009
|9 -- missing cx lookup --
|1 D Fischer
|p 414 -
|2 Crossref
|u Fischer D, Hafner P, Rubino D et al (2016) The 6-minute walk test, motor function measure and quantitative thigh muscle MRI in Becker muscular dystrophy: a cross-sectional study. Neuromuscul Disord 26:414–422. https://doi.org/10.1016/j.nmd.2016.04.009
|t Neuromuscul Disord
|v 26
|y 2016
999 C 5 |a 10.1002/jmri.27032
|9 -- missing cx lookup --
|1 S Schlaeger
|p 1727 -
|2 Crossref
|u Schlaeger S, Weidlich D, Klupp E et al (2020) Water T2 mapping in fatty infiltrated thigh muscles of patients with neuromuscular diseases using a T2-prepared 3D turbo spin echo with SPAIR. J Magn Reson Imaging 51:1727–1736. https://doi.org/10.1002/jmri.27032
|t J Magn Reson Imaging
|v 51
|y 2020
999 C 5 |a 10.2174/1566524016666161128113338
|9 -- missing cx lookup --
|1 AL Nash
|p 779 -
|2 Crossref
|u Nash AL, Burns KJ, Warman Chardon J et al (2017) Spinal muscular atrophy: more than a disease of motor neurons? Curr Mol Med 16:779–792. https://doi.org/10.2174/1566524016666161128113338
|t Curr Mol Med
|v 16
|y 2017
999 C 5 |a 10.1007/s10545-015-9825-9
|9 -- missing cx lookup --
|1 PG Carlier
|p 565 -
|2 Crossref
|u Carlier PG, Azzabou N, de Sousa PL et al (2015) Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients. J Inherit Metab Dis 38:565–572. https://doi.org/10.1007/s10545-015-9825-9
|t J Inherit Metab Dis
|v 38
|y 2015
999 C 5 |a 10.21037/QIMS-20-39
|1 H Reyngoudt
|9 -- missing cx lookup --
|2 Crossref
|u Reyngoudt H, Marty B, De Almeida Araújo EC et al (2020) Relationship between markers of disease activity and progression in skeletal muscle of GNE myopathy patients using quantitative nuclear magnetic resonance imaging and 31P nuclear magnetic resonance spectroscopy. Quant Imaging Med Surg. https://doi.org/10.21037/QIMS-20-39
|t Quant Imaging Med Surg
|y 2020
999 C 5 |a 10.1016/j.expneurol.2009.10.012
|9 -- missing cx lookup --
|1 HC Lehmann
|p 238 -
|2 Crossref
|u Lehmann HC, Zhang J, Mori S, Sheikh KA (2010) Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 223:238–244. https://doi.org/10.1016/j.expneurol.2009.10.012
|t Exp Neurol
|v 223
|y 2010
999 C 5 |a 10.1002/ar.1092150111
|9 -- missing cx lookup --
|1 H Schmalbruch
|p 71 -
|2 Crossref
|u Schmalbruch H (1986) Fiber composition of the rat sciatic nerve. Anat Rec 215:71–81
|t Anat Rec
|v 215
|y 1986
999 C 5 |a 10.2214/AJR.12.9230
|1 KA Cauley
|9 -- missing cx lookup --
|2 Crossref
|u Cauley KA, Filippi CG (2013) Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots—clinical applications. Am J Roentgenol. https://doi.org/10.2214/AJR.12.9230
|t Am J Roentgenol
|y 2013
999 C 5 |a 10.1007/S00330-008-0971-4/FIGURES/6
|9 -- missing cx lookup --
|1 C Khalil
|p 2283 -
|2 Crossref
|u Khalil C, Hancart C, Le Thuc V et al (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291. https://doi.org/10.1007/S00330-008-0971-4/FIGURES/6
|t Eur Radiol
|v 18
|y 2008
999 C 5 |a 10.3233/JND-190424
|9 -- missing cx lookup --
|1 DC Schorling
|p 1 -
|2 Crossref
|u Schorling DC, Pechmann A, Kirschner J (2020) Advances in treatment of spinal muscular atrophy—new phenotypes, new challenges, new implications for care. J Neuromuscul Dis 7:1. https://doi.org/10.3233/JND-190424
|t J Neuromuscul Dis
|v 7
|y 2020


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21