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Abstract

Background Magnetic resonance imaging (MRI) is currently explored as supplemental tool to monitor disease progression
and treatment response in various neuromuscular disorders. We here assessed the utility of a multi-parametric magnetic
resonance imaging (MRI) protocol including quantitative water 7, mapping, Dixon-based proton density fat fraction (PDFF)
estimation and diffusion tensor imaging (DTI) to detect loss of spinal motor neurons and subsequent muscle damage in adult
SMA patients.

Methods Sixteen SMA patients and 13 age-matched controls were enrolled in this prospective, longitudinal study. All par-
ticipants underwent MRI imaging including measurements of Dixon-based PDFF and DTTI of the sciatic nerve. SMA patients
furthermore underwent measurements of muscle water T, (7,,,) of the biceps femoris muscle (BFM) and quadriceps femoris
muscle (QFM). Ten participants returned for a second scan six months later. MRI parameter were correlated with clinical
data. All patients were on nusinersen treatment.

Results There were significantly higher intramuscular fat fractions in the BFM and QFM of SMA patients compared to
healthy controls at baseline and after 6 months. Furthermore, T2 values significantly correlated positively with intramuscular
fat fractions. The Hammersmith functional motor scale significantly correlated with the QFM’s intramuscular fat fractions.
DTI scans of the sciatic nerve were not significantly different between the two groups.

Conclusion This study demonstrates that, water 7, mapping and Dixon-based PDFF estimation may distinguish between
adult SMA patients and controls, due to massive intramuscular fat accumulation in SMA. More extensive long-term studies
are warranted to further evaluate these two modalities as surrogate markers in SMA patients during treatment.
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Introduction

Spinal muscular atrophy (SMA) is characterized by degen-
eration of the spinal cord’s alpha motor neurons, resulting
in severely disabling progressive muscle weakness. SMA
is an autosomal-recessive disorder caused by mutations in
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Disease progression in adult SMA is usually monitored
by clinical tests, i.e., Hammersmith Functional Motor Scale
(HFMS) and its expanded version (HFSME), the Revised
Upper Limb Module (RULM), or the 6-min walk test
(6MWT) [6]. However, these clinical tests have limitations.
For example, the HFMS(E) is time-consuming, biased by
fatigue, and non-linear [7]. Therefore, non-invasive biomark-
ers could be useful to monitor nerve and muscle changes and
to measure the treatment response in SMA.

Many studies explored the utility of magnetic resonance
imaging (MRI) as diagnostic and surrogate markers for
motor neuron diseases including SMA. Patients with SMA
show fatty replacement and muscle atrophy in T1-weighted
images [8]. By the use of the so-called Dixon-based proton
density fat fraction (PDFF) estimation, Otto and colleagues
demonstrated in a small cross-sectional study that SMA
patients have sixfold higher fat fractions in the thigh mus-
cles than healthy controls [9]. Likewise, two other studies
assessed muscle fat infiltration of thigh muscles in smaller
cohorts of non-treated SMA patients [10, 11]. Bonati et al.
[11] carved out a significant, almost tenfold higher muscle
fat content in SMA3 patients than healthy controls with high
reproducibility after 6 months. Additionally, water T, (T,,,)
mapping has been used as a biomarker in different neuro-
muscular diseases, as it reflects pathophysiological changes
of skeletal muscle tissue and is sensitive to different pro-
cesses, such as inflammation, edema, and myocytic lesions
[9, 12, 13].

Muscle MRI can be supplemented by nerve diffusion
tensor imaging (DTI), revealing information about nerve
damage and regeneration [14—18]. Previous studies in other
neuromuscular and neuropathy disorders found a decreased
fractional anisotropy (FA) in the sciatic nerve compared to
controls [14, 19]. So far, studies in SMA patients only inves-
tigated the FA in muscle tissue showing increased values
compared to healthy controls but did not investigate nerve
structures themselves [9, 20]. Therefore, we conducted this
study with the aim to explore different MRI modalities that
might be useful in future studies to assess and quantify mus-
cle denervation and nerve degeneration in SMA.

Methods
Study design

Sixteen patients (six females, ten males; mean age
39.63 +2.82 years) with SMA and 13 age-matched
healthy controls (four females, nine males; mean age
49.42 +3.7 years) were included in this study. All patients
were diagnosed with SMA?2 and 3 according to the guide-
lines of the Neuromuscular Disorder Society [1]. Four
patients had 2-3 SMN?2 copies and seven patients 4-5 SMN2
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copies. The number of SMN2 copies was not applicable
in five patients. Exclusion criteria were other neuromus-
cular diseases and contraindications against MRI. Clini-
cal characteristics are shown in Table 2. All patients were
on Nusinersen treatment (every 4 months, mean duration
10.9 + 7.8 months). The local ethics committee approved
the study, and all subjects gave written informed consent
before study inclusion. This prospective, longitudinal, non-
randomized, clinical, single-center study was carried out
under the Declaration of Helsinki.

Clinical assessment

Established clinical scores (HFMS, HFMSE, RULM and
6MWT) were performed for each patient at baseline (t0)
and after 6 months (t1). Briefly, the HFMS is made up of
20 items in which the patients’ physical function is tested
[21]. The expanded HFSM (HFMSE) was created for SMA
patients who can sit and walk and is supplemented by 13
more items. The scores are used for measuring the severity
and progression in SMA patients. In the scales, the items are
subdivided into three functional categories (standing and
transfers; axial and proximal motor function; distal motor
function). The HFMS ranges from 0 (severe impairment)
to 2 (no impairment) with a minimum total score of 0 and a
maximum total score of 40. The HFMSE score ranges from
0 (severe impairment) to 2 (no impairment) per item with
a minimum total score of 0 and a maximum total score of
66. The Revised Upper Limb Module (RULM) was estab-
lished to assess motor performance of the upper limbs. The
six-minute walk test (6MWT) evaluates functional exercise
capacity and reflects motor fatigue in ambulatory SMA
patients.

MRI data acquisition and analysis

The MRI protocol was based on a protocol already estab-
lished in studies of patients with chronic inflammatory
demyelinating polyneuropathy or amyotrophic lateral scle-
rosis [14, 19]. The well-established protocol was extended
by a quantitative T2 mapping sequence. As in the other stud-
ies, examinations were performed on a 3T whole-body MRI
system (Ingenia, Philips Healthcare, Best, The Netherlands).
With feet first in a supine position, participants were posi-
tioned so that their right thigh was examined deep within a
knee coil (dStream T/R Knee 16ch Coil, Philips Healthcare,
Best, Netherlands) with the center of the coil approximately
5-10 cm above the upper pole of the patella.

MRI sequences

A SHINKEI-based three-dimensional T2-weighted turbo
spin echo (3D T2 TSE) sequence with fat and vascular signal
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suppression was used to delineate the nerve [22—-24]. Based
on this planning sequence, an axial T2-weighted mDixon
TSE (2D T2 TSE) for anatomic assessment and the DTI
sequence were performed perpendicular to the sciatic nerve.

To quantify the intramuscular fat fractions of the quadri-
ceps femoris (QFM) and biceps femoris (BFM) muscles, a
six-echo multi-echo gradient echo sequence (mDixon Quant,
Philips Healthcare, Best, The Netherlands) generating PDFF
maps was acquired transversely. For quantitative assessment
of intramuscular T2 relaxation times, a T2 map sequence
was performed similarly. For detailed MRI parameters, see
Table 1.

Data analysis

A senior radiologist (T. L.) evaluated the MR images. A sec-
ond senior radiologist (K. L.) validated the measurements in
a subgroup. DTI raw data post-processing and complete MRI
analysis were performed using IntelliSpace Portal (IntelliSpace
Portal 9.0, Philips Healthcare, Amsterdam, The Netherlands).

In the DTI sequence, the sciatic nerve was examined using
six freehand drawn ROIs in six adjacent slices of color-coded
fractional anisotropy (FA) images in correlation with the ana-
tomical information of the »=0 and 2D T2 TSE images. The
mean of these six FA values was then determined to obtain the
final FA value of each subject. Fiber tracking of the nerve was
performed to depict the examined part of the thigh.

To determine the average intramuscular fat fractions and 7,
times, respectively, subtotal ROIs were drawn freehand into
each part of the quadriceps femoris muscle (vastus lateralis,
intermedius, medialis, rectus femoris) and the short and long

heads of the biceps femoris muscle on the most proximal slice
in each of the PDFF and T, maps. The ROIs were drawn within
2 mm of the muscle boundaries. The differing area sizes (A_i)
of the individual ROIs (ROI_i with individual fat fractions
(FF_i)) were taken into account using the formula FF_mean_
over_ROIs=sum (A_i X FF_i)/sum (A_1i), where the sum is the
summation over all ROIs.

Statistical analysis

For all statistical analyses, dedicated software was used
(Statistics Package for Social Sciences (SPSS), v26, IBM,
Armonk, N, United States; Graph Pad Prism, v7, GraphPad
Software, San Diego, CA, United States). A group compari-
son analysis was performed using the Mann—Whitney U test.
The Kruskal-Wallis test was applied to compare more than
two groups. Nonparametric Spearman’s correlation tests were
used to assess correlations. For inter-rater reliability, intra-class
correlation coefficients (ICC) were deemed indicative. A p
value < 0.05 was considered statistically significant. Statistical
analyses of the graphs depict the mean + standard error of the
mean.

Results
Clinical characteristics
Clinical characteristics of the participants are shown in

Table 2. All patients received Nusinersen three times a year
after four initial loading doses. Overall, the patients were

Table 1 MRI parameters

3D T2 TSE? 2D T2 TSE® PDFF mapping® DT T2 mapping
Encoding 3D 2D 3D 2D 2D
Repetition time (ms) 2000 2500 10 6500 5112
(Act. TR)
Echo time (ms) 273 60 6 echoes 62 16 echoes
(TE1=1.45, (TE1=17,
ATE=1.1) ATE=17)
Flip angle (°) 90 90 3 90 90
Matrix 216x143%x143  640x468 108 x 107 128%x130 192x180
Resolution (mm?®) 1.25x1.25x1.4 03%x04x4 1.8x1.8x4 1.5x1.5 I1x1x4
x4
Slices 143 30 20 20 18
Gap N/A 0 N/A 0 04
b values (s/mm?) N/A N/A N/A 0and 800 N/A
Scan time 2:30 5:00 1:05 9:00 2:13
Sense 2.5 2 1 2 2

43D T2 TSE—three-dimensional T2 turbo spin echo sequence

>TSE—turbo spin echo

‘PDFF—proton-density fat fraction mapping generated by a six-echo multi-echo gradient echo sequence

4DTI—Diffusion Tensor Imaging
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Table 2 Clinical data

SMA Controls  p value
Sex (female:male) 6:10 4:9
Age (years) 39.6 (2.8) 494 3.7) 0.08 (n.s.)
Height (cm) 166.8 (2.3) 181.2(2.4) 0.0005 (***)
Weight (kg) 63.19 (4.3) 76.77 (4.7) 0.034 (*)
BMI (cn/kg?) 22.48 (1.1) 22.80(0.9) 0.94 (n.s.)
Therapy (Nusinersen) 16/16
Treatment duration (months) 10.9 (7.8)
Ambulatory vs. non-ambu-  5:11

latory

SMA spinal muscular atrophy, Standard error of the mean (SEM) in
brackets, n.s. not significant, *p <0.05

moderately affected with a mean HFMS of 29.97 +3.53.
The median of number of SMN2 copies was 4 (minimum
2, maximum 5, 25 percentile 3, 75 percentile 4). Controls
showed no anamnestic or clinical signs of small or large
nerve fiber affection.

PDFF mapping

Spinal muscular atrophy (SMA) patients showed sig-
nificantly higher intramuscular fat fractions in the QFM
and in the BFM than healthy controls at baseline (¢+=0)
(68.41+£2.36 vs. 2.4+1.73, p<0.0001 and 52.6 +7.03 vs.
4.23+1.85, p<0.0001). Comparable values were measured
after 6 months (r=1) (68.21 £2.53 vs. 2.4+ 1.73, p <0.0001
and 52.60+7.03 vs. 4.23 +1.85, p<0.0001). No significant
changes were seen in the intramuscular fat fractions in QFM
and BFM in SMA patients after 6 months (68.41 +£2.36
vs. 68.21 +£2.53, p=0.91; 55.14 +£5.93 vs. 52.60+7.03,
p=0.95, Fig. 1). Interrater reliability for PDFF mapping
was excellent (ICC 0.981).

Water T, mapping

T2BFM and the T2QFM correlated significantly positively
at baseline with intramuscular fat fractions of BFM and
QFM (r=0.6294, p=0.0106 and »=0.5095, p=0.0479,
Fig. 2). At 6 months, the significant positive correlation
between T2BFM and intramuscular fat fractions was rep-
licable (r=0.7818, p=0.0105, Fig. 2). Interrater reliability
for water T, mapping was good (ICC 0.722).

DTI
DTI scans of the sciatic nerves of patients with SMA at

baseline showed almost equal FA values compared to
healthy controls (0.44 +0.1 vs. 0.44 +0.01, p=0.77, Fig. 3).
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Biceps femoris m. Quadriceps femoris m.

Fig.1 Dixon-based PDFF estimation. Representative Dixon-based
PDFF maps of thigh muscles of a patient with SMA A and a healthy
control B. Subtotal intramuscular ROIs were drawn on these maps to
quantify the fat fraction. An increased fat fraction goes along with
a higher intramuscular signal. C Depicts the average intramuscular
fat fractions in the biceps femoris and quadriceps muscles of SMA
patients and healthy controls. Fat fractions were significantly higher
in both muscles in patients with SMA at baseline (#0) and after
6 months (¢1). No significant differences between the fat fractions in
SMA patients were detected at baseline and after 6 months

At 6 months, FA values were also not significantly differ-
ent (0.4140.01 vs. 0.44+0.01, p=0.1186). No significant
changes in FA in SMA patients were noted after six months
(0.44+0.1 vs. 0.41 +0.01, p=0.35). Interrater reliability for
DTI was good (ICC 0.715).

Clinical correlations and scores

MRI parameters were correlated with clinical measure-
ments. The intramuscular fat fractions of the QFM at base-
line significantly correlated negatively with the HFMS
(r=-0.5569, p=0.0385, Fig. 4), i.e., a higher intramuscular
fat fraction was associated with a lower HFMS. There was
a non-significant trend for a negative correlation between
HFMSE and the intramuscular fat fractions. No significant
differences were seen between the MRI parameters and the
number of SMN2 copies (data not shown).

Subgroup analysis
In the PDFF mapping, non-ambulatory patients tended to

have a higher mean fat fraction of the BFM and QFM
than ambulatory patients (n=11 vs. n=35), but this effect
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Fig.3 DTI. Tractography and fractional anisotropy (FA) in the proxi-
mal sciatic nerve segment of a healthy control. A illustrates FA sam-
pling in a sagittal mid-section 3D T2 TSE-image of a healthy control.
The course of the sciatic nerve is visualized by deterministic fiber
tracking. B There were no significant differences seen in average FA
values of sciatic nerves in patients with SMA and healthy controls at
baseline (t0) and 6 months follow-up (t1)

was not statistically significant (data not shown). T2ZBFM
in non-ambulatory patients was significantly higher com-
pared to ambulatory patients (110.1 +6.46 vs. 78.18 +5.1,
p=0.0133, Fig. 5). A similar trend was observed in
T2QFM but did not reach statistical significance. DTI FA
values were not significantly different in ambulatory and
non-ambulatory patients (0.4861 +0.02 vs. 0.4199 +0.02,
p=0.1533).

Fig.4 Correlation of Dixon-based PDFF mapping in QFM with
HFMS. Intramuscular fat fractions in the quadriceps femoris muscle
(QFM) of patients with SMA correlated significantly negatively with
HEMS (r=-0.5569, p=0.0385)

Discussion

Out data suggest that adult SMA goes along with sub-
stantial intramuscular fat accumulation in thigh muscles,
which Dixon-based PDFF and muscle water T, mapping
can quantify.

The study proves the feasibility of Dixon-based PDFF
and water 7, mapping to detect pathological abnormalities
in thigh muscles of SMA patients in line with previous
studies using these measures as biomarkers of tissue fat
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Fig.5 Non-ambulatory patients showed a higher T2 value in both
muscles, in BFM and QFM, with a significant difference in the BFM
(p=0.0133). Amb. ambulatory SMA, Non-Amb. non-ambulatory
SMA, BFM biceps femoris muscle, QFM quadriceps femoris muscle,
*p<0.05

concentration in different neuromuscular diseases [9, 12,
25].

We found significantly higher fat fractions in proximal
muscles of SMA patients compared to controls. These
results reflect the accentuated proximal muscle weakness in
SMA. Our findings are in line with those of Otto and col-
leagues, who also reported increased intramuscular fat frac-
tions in thigh muscles in SMA patients. However, compared
to their cohort, we found even higher percentages of muscle
fat (68.51% and 55.14% vs. 47.6%). These differences might
reflect our study’s comparatively older patient cohort (mean
age 39.6 vs. 30.2 years).

Intramuscular fat fractions of the QFM correlated sig-
nificantly negatively with the HFMS at baseline. Other cor-
relations between MRI biomarkers and clinical parameters
could not be detected. This finding suggests that among all
tested parameters, only the Dixon-based PDFF mapping may
serve as a potential biomarker for disease severity in SMA
patients, provided that larger studies spanning longer time
periods may confirm correlations with functional decline
over time. The lack of correlation with other parameters in
our studies is explained by the overall high muscle fat infil-
tration of our patients and the small sample size. In addi-
tion, the different scales used here show different sensitivity
for skills in ambulatory and non-ambulatory patients. For
instance, the HFMS is an excellent tool for evaluation of
motor function in non-ambulatory SMA patients, whereas
the HFSME covers a broader spectrum of ambulatory
functions.

The quantitative T2 values were also highly abnormal in
SMA. This biomarker reflects pathophysiological changes
of skeletal muscle tissue and is sensitive to different pro-
cesses, such as inflammation, edema, myocytic lesions and
necrosis [13]. Muscle denervation often simultaneously
causes fatty and edematous alterations in one muscle [26],
which both increase the T2 values. Therefore, the underlying
changes cannot be further attributed to one or several patho-
logical changes of muscle tissue. Our study demonstrates a
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positive correlation between T2 values and the intramuscular
BFM and QFM fat fractions. Furthermore, non-ambulatory
patients showed significantly higher T2 values in BFM com-
pared to ambulatory patients. The most likely explanation
for this finding is that the fatty degeneration confounds the
T2 values. Since SMA is considered a systemic condition
in which SMN protein depletion also affects the function of
other tissues, including the skeletal muscle, heart, and auto-
nomic nervous system [27], we cannot exclude that other
pathological processes could affect MRI signaling properties
of muscle in SMA patients. Water 7', mapping, as used here,
is not an appropriate method to distinguish clearly between
inflammatory processes and fatty infiltration. Elaborated
methods with a reduced sensitivity to fatty infiltration for
T,,, are needed [26].

Other studies announced a positive correlation between
T2 intensity and mean annual increase of muscle fat replace-
ment in late-onset Pompe disease [28] and GNE myopathy
[29]. One has to consider, that higher intramuscular fat frac-
tions might confound these data.

We did not find significant changes in PDFF mapping at
baseline and during the course of 6 months. Potential expla-
nations include that the period was too short or that the most
patients were on treatment, preventing significant loss of
spinal motor neurons. Carlier and colleagues demonstrated
that in treatment-naive Pompe patients fatty infiltration
progresses at a yearly rate of nearly 0.9% whereas this rate
decreases to less than 0.68% during treatment. In our study,
each patient received Nusinersen and showed a stable clini-
cal course after six months. Another reason could be that
Morbus Pompe is a myopathy with pathological processes
primarily located in the muscles, whereas in SMA, mainly
motoneurons are affected with secondary involvement of
muscle tissue.

We did not find significant differences in FA values of
the SMA patients compared to healthy controls at baseline
and after six months. Previous studies have demonstrated
that FA is a marker of axonal damage and regeneration [30].
The similar FA values in the two groups can probably be
explained by the composition of the sciatic nerve, as it con-
tains up to 70% sensory nerve fibers not involved in SMA
pathogenesis [31]. It is conceivable that changes in FA levels
in SMA would be more pronounced in motor nerves (e.g.,
the femoral nerve). There are studies that investigated DTI
in other nerves such as the median nerve [32, 33]. How-
ever, the median nerve is also a mixed sensory and motor
nerve and therefore not more promising when it comes to
a motoneuron disorders such as SMA. To our knowledge,
there are no experimental data of DTI in the femoral nerve
in motoneuron conditions, most probably due to the fact,
that the nerve itself is difficult to measure because of its
small cross section. Another reason why we did not find sig-
nificant differences in the FA values of SMA patients after
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6 months may be the relatively short time period. As SMA
is a slowly progressive disease it is expectable that changes
in DTI could be detected after a longer time period, e.g.,
after a few years. Further studies are warranted to investigate
this manner.

A limitation of our study is that we could not include
treatment-naive patients, as all patients were already on
nusinersen treatment for an average of 10.9 months. Con-
secutively, we could not collect reference data. Due to the
fact, that newborn screening to SMA is explored and imple-
mented in an increasing number of countries [34], it would
be helpful to implement collaborations with pediatric centers
to include therapy naive SMA patients to collect reference
data.

In conclusion, this is the first longitudinal study to show
the feasibility of a multi-parametric MRI protocol includ-
ing Dixon-based PDFF mapping and water T2 mapping in
thigh muscles as well as DTI in nerves in SMA. Our data
demonstrate muscle atrophy going along with muscle fat
replacement. Among the tested parameters, Dixon-based
PDFF mapping and water T2 mapping appear to be more
suitable to be further explored as SMA surrogate marker
than DTI-based FA.
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