000912543 001__ 912543
000912543 005__ 20221214131527.0
000912543 037__ $$aFZJ-2022-05716
000912543 041__ $$aEnglish
000912543 1001_ $$0P:(DE-HGF)0$$aAbdelsamie, A.$$b0$$eCorresponding author
000912543 1112_ $$aDirect and Large-Eddy Simulation$$cUdine$$d2022-10-26 - 2022-10-28$$gDLES13$$wItaly
000912543 245__ $$aTransition and acoustic excitation of stenotic pipe flows at different Reynolds numbers
000912543 260__ $$c2022
000912543 3367_ $$033$$2EndNote$$aConference Paper
000912543 3367_ $$2DataCite$$aOther
000912543 3367_ $$2BibTeX$$aINPROCEEDINGS
000912543 3367_ $$2DRIVER$$aconferenceObject
000912543 3367_ $$2ORCID$$aLECTURE_SPEECH
000912543 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1670938589_31169$$xAfter Call
000912543 520__ $$aA human respiratory system consists of phonation components that are coupled in a complex manner in order to ensure various vital functions, in particular voice generation.The interdisciplinary nature of the processes controlling sound generation complicates the analysis. Analytical studies are limited and can only be used to characterize the main acoustic sources in connection to various types of fluid motion.Numerical investigations of sound generation require an accurate simulation of the flow field with a proper representation of the respiratory pathways and process conditions in order to get the acoustic source terms. Furthermore, voice formation is closelyrelated to the resonance of acoustic modes in and around the mouth cavity; in order to be able to model this properly, it is essential to identify first the sound sources excited within the vocal tract.To better elucidate this complex process, the fundamental mechanisms in a biofluid flow mimicking such configurations were investigated based on a simplified stenotic pipe using high-resolution DNS and LES.
000912543 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000912543 7001_ $$0P:(DE-Juel1)176474$$aKoh, Seong-Ryong$$b1
000912543 7001_ $$0P:(DE-HGF)0$$aJaniga, G.$$b2
000912543 7001_ $$0P:(DE-HGF)0$$aThévenin, D.$$b3
000912543 909CO $$ooai:juser.fz-juelich.de:912543$$pVDB
000912543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Magdeburg$$b0
000912543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176474$$aForschungszentrum Jülich$$b1$$kFZJ
000912543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Magdeburg$$b2
000912543 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Magdeburg$$b3
000912543 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000912543 9141_ $$y2022
000912543 920__ $$lno
000912543 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000912543 980__ $$aconf
000912543 980__ $$aVDB
000912543 980__ $$aI:(DE-Juel1)JSC-20090406
000912543 980__ $$aUNRESTRICTED