000912553 001__ 912553
000912553 005__ 20230123110758.0
000912553 0247_ $$2doi$$a10.1016/j.nicl.2022.103262
000912553 0247_ $$2Handle$$a2128/33081
000912553 0247_ $$2pmid$$a36451365
000912553 0247_ $$2WOS$$aWOS:000892218700001
000912553 037__ $$aFZJ-2022-05726
000912553 082__ $$a610
000912553 1001_ $$0P:(DE-HGF)0$$aKobeleva, Xenia$$b0
000912553 245__ $$aAdvancing brain network models to reconcile functional neuroimaging and clinical research
000912553 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2022
000912553 3367_ $$2DRIVER$$aarticle
000912553 3367_ $$2DataCite$$aOutput Types/Journal article
000912553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670933627_6832
000912553 3367_ $$2BibTeX$$aARTICLE
000912553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912553 3367_ $$00$$2EndNote$$aJournal Article
000912553 520__ $$aFunctional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomicalalterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complexin addition to being noisy, so fMRI still faces limitations for clinical applications. Here we review methods thathave been proposed as potential solutions so far, namely statistical, biophysical and decoding models, with theirstrengths and weaknesses. We especially evaluate the ability of these models to directly predict clinical variablesfrom their parameters (predictability) and to extract clinically relevant information regarding biologicalmechanisms and relevant features for classification and prediction (interpretability). We then provide guidelinesfor useful applications and pitfalls of such fMRI-based models in a clinical research context, looking beyond thecurrent state of the art. In particular, we argue that the clinical relevance of fMRI calls for a new generation ofmodels for fMRI data, which combine the strengths of both biophysical and decoding models. This leads toreliable and biologically meaningful model parameters, which thus fulfills the need for simultaneous inter-pretability and predictability. In our view, this synergy is fundamental for the discovery of new pharmacologicaland interventional targets, as well as the use of models as biomarkers in neurology and psychiatry.
000912553 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000912553 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912553 7001_ $$0P:(DE-HGF)0$$aVaroquaux, Gaël$$b1
000912553 7001_ $$0P:(DE-HGF)0$$aDagher, Alain$$b2
000912553 7001_ $$0P:(DE-HGF)0$$aAdhikari, Mohit$$b3
000912553 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b4$$ufzj
000912553 7001_ $$0P:(DE-Juel1)184621$$aGilson, Matthieu$$b5$$eCorresponding author
000912553 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2022.103262$$gVol. 36, p. 103262 -$$p103262 -$$tNeuroImage: Clinical$$v36$$x2213-1582$$y2022
000912553 8564_ $$uhttps://juser.fz-juelich.de/record/912553/files/PDF.pdf$$yOpenAccess
000912553 909CO $$ooai:juser.fz-juelich.de:912553$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000912553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b4$$kFZJ
000912553 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000912553 9141_ $$y2022
000912553 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000912553 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000912553 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000912553 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000912553 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000912553 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000912553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2021$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T10:57:54Z
000912553 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T10:57:54Z
000912553 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-10-13T10:57:54Z
000912553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-15
000912553 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000912553 920__ $$lyes
000912553 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000912553 980__ $$ajournal
000912553 980__ $$aVDB
000912553 980__ $$aUNRESTRICTED
000912553 980__ $$aI:(DE-Juel1)INM-3-20090406
000912553 9801_ $$aFullTexts