001     912553
005     20230123110758.0
024 7 _ |a 10.1016/j.nicl.2022.103262
|2 doi
024 7 _ |a 2128/33081
|2 Handle
024 7 _ |a 36451365
|2 pmid
024 7 _ |a WOS:000892218700001
|2 WOS
037 _ _ |a FZJ-2022-05726
082 _ _ |a 610
100 1 _ |a Kobeleva, Xenia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Advancing brain network models to reconcile functional neuroimaging and clinical research
260 _ _ |a [Amsterdam u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670933627_6832
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomicalalterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complexin addition to being noisy, so fMRI still faces limitations for clinical applications. Here we review methods thathave been proposed as potential solutions so far, namely statistical, biophysical and decoding models, with theirstrengths and weaknesses. We especially evaluate the ability of these models to directly predict clinical variablesfrom their parameters (predictability) and to extract clinically relevant information regarding biologicalmechanisms and relevant features for classification and prediction (interpretability). We then provide guidelinesfor useful applications and pitfalls of such fMRI-based models in a clinical research context, looking beyond thecurrent state of the art. In particular, we argue that the clinical relevance of fMRI calls for a new generation ofmodels for fMRI data, which combine the strengths of both biophysical and decoding models. This leads toreliable and biologically meaningful model parameters, which thus fulfills the need for simultaneous inter-pretability and predictability. In our view, this synergy is fundamental for the discovery of new pharmacologicaland interventional targets, as well as the use of models as biomarkers in neurology and psychiatry.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Varoquaux, Gaël
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dagher, Alain
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Adhikari, Mohit
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 4
|u fzj
700 1 _ |a Gilson, Matthieu
|0 P:(DE-Juel1)184621
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.nicl.2022.103262
|g Vol. 36, p. 103262 -
|0 PERI:(DE-600)2701571-3
|p 103262 -
|t NeuroImage: Clinical
|v 36
|y 2022
|x 2213-1582
856 4 _ |u https://juser.fz-juelich.de/record/912553/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:912553
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2021
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T10:57:54Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T10:57:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-15
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21