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A B S T R A C T   

Functional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomical 
alterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complex 
in addition to being noisy, so fMRI still faces limitations for clinical applications. Here we review methods that 
have been proposed as potential solutions so far, namely statistical, biophysical and decoding models, with their 
strengths and weaknesses. We especially evaluate the ability of these models to directly predict clinical variables 
from their parameters (predictability) and to extract clinically relevant information regarding biological 
mechanisms and relevant features for classification and prediction (interpretability). We then provide guidelines 
for useful applications and pitfalls of such fMRI-based models in a clinical research context, looking beyond the 
current state of the art. In particular, we argue that the clinical relevance of fMRI calls for a new generation of 
models for fMRI data, which combine the strengths of both biophysical and decoding models. This leads to 
reliable and biologically meaningful model parameters, which thus fulfills the need for simultaneous inter
pretability and predictability. In our view, this synergy is fundamental for the discovery of new pharmacological 
and interventional targets, as well as the use of models as biomarkers in neurology and psychiatry.   

1. Neuroimaging in clinical practice and research 

1.1. Evolution of neuroimaging diagnostic modalities in neuropsychiatric 
practice 

Medical doctors originally studied and diagnosed diseases based 
solely on careful observation of symptoms and clinical examination. 
Several medical technologies, such as laboratory tests and radiographic 
techniques, had been initially met with skepticism given that they 
challenged the diagnostic authority of medical practitioners (Berger, 

1999) and altered the patient-doctor relationship (Goold and Lipkin, 
1999). History tends to repeat itself, and similar discussions are being 
held nowadays regarding the clinical application of machine learning to 
neuroimaging signals (Longoni et al., 2019). 

Currently, diagnosis using magnetic resonance imaging (MRI) in 
neurology still mostly relies on qualitative analyses of brain structures 
and perfusion, which are restricted to anatomical alterations directly 
visible to the eye. With regard to psychiatry, clinical diagnoses pre
dominantly rely on psychopathological explorations in combination 
with medical history and other factors as defined by specific diagnostic 
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manuals such as the Diagnostic and Statistical Manual of Mental Dis
orders (DSM), while neuroimaging measures remain at an exploratory 
stage in research. Thus, the clinical utilization of functional MRI (fMRI) 
does not stretch beyond the identification of localized functional areas 
for presurgical mapping before epilepsy or tumor surgery (Duffau, 2005; 
Silva et al., 2018). The broader acceptance of fMRI into clinical di
agnostics is partly impeded by a general skepticism regarding the sig
nificance of the measured signals (Bennett et al., 2009; Kullmann, 
2020), especially when considering the low signal-to-noise-ratio on a 
single subject level (Gorgolewski et al., 2013). While Blood Oxygen 
Level-Dependent (BOLD) signals have been clearly shown to indirectly 
reflect neuronal activity (Shmuel and Leopold, 2008), their relationship 
is complex and nonlinear. However, a good understanding of this 
complex relationship might be relevant for uncovering neuronal infor
mation processing and corresponding dysfunctions in neuropsychiatric 
diseases. In addition, BOLD signals are known to be contaminated by 
artifacts like head movement and respiration, which ideally requires 
careful preprocessing to access to the neuronal underlying contributions 
to fMRI signals (Fair et al. 2020; Lynch et al. 2021). 

Despite their complex and noisy nature, fMRI data have shown po
tential for revealing brain dysfunction information not directly visible to 
the naked eye via an anatomical MRI scan. Various mathematical 
models have been developed for various goals such as reproducing the 
dynamics of fMRI signals and extracting information related to cognitive 
functions or pathological conditions. However, given that these models 
almost always involve highly multidimensional measures and/or 
parameterization, their interpretation for clinical application remains 
much more difficult compared to standard imaging diagnoses, in which 
normal anatomy is clearly established (e.g., identifying lesions or brain 
volumes). As such, whether more complex models would be sufficient to 
make fMRI clinically relevant, especially for neuropsychiatric disorders 
that still lack robust biological tests, still remains unknown. 

This oriented review argues that better fMRI activity models are 
needed to enhance its clinical relevance. We start by providing guide
lines on how to ask relevant questions for clinical neurology and psy
chiatry, applicable to any model in neurology. We then provide an 
overview of the model types based on or applied to functional brain 
networks, i.e., considering interactions between brain regions. In other 
words, we narrow our focus to network-oriented modeling approaches 
used to study neuropsychiatric diseases in a similar fashion as 
phenomenological functional connectivity (FC) (Bassett et al. 2008; Finn 
et al. 2014). We thus aim to go beyond earlier measures derived from 
empirical BOLD activity, such as voxel-level activity (mass univariate) 
or multivariate pattern analysis. Then, two distinct meanings of model 
interpretability—uncovering biological mechanisms versus identifying 
relevant features in a classifier—are discussed. In particular, we high
light the need for thorough validation of the relationship between fMRI- 
based functional connectivity (i.e., pairwise correlations of BOLD sig
nals) and neuronal communication. We then discuss the interpretability 
of the models in contrast to predictability, herein understood as the 
ability of a model to predict clinical or cognitive variables from its pa
rameters. Finally, we propose a promising approach for improving both 
predictability and interpretability that combines the strengths of the 
available models using parameters from biophysical models as features 
for decoding models (which will be described in more detail later). All in 
all, this review identifies roadblocks and advocates for more careful 
modeling and robust model validation. 

1.2. Asking the right questions using translational research models 

The traditional view of translational research mainly encompasses 
transferring innovative technologies from research into clinical practice 
(“from bench to bedside”) and vice versa. Newer outlooks on trans
lational research underline the importance of involving the community 
comprising patients, healthy populations, journalists, and medical 
practitioners (Cohrs et al., 2014; Forsythe et al., 2016). In the context of 

using data-driven models in translational research, collaboration be
tween stakeholders can be substantially strengthened by asking precise 
and clinically relevant research questions. To this end, the “PICO” 
method (Richardson et al., 1995; Sackett et al., 2000) provides a 
framework comprising four components: P (population, patient, and/or 
problem), I (intervention, such as drugs, brain stimulation, diagnostic 
procedures, exposure, genetic factors), C (intervention for comparison), 
and O (outcome). A clinical research question is typically presented in 
the following format: 

“In a given patient group, how does the intervention X differ from stan
dard intervention Y in terms of outcome?” 
“In a given patient group, how does the diagnostic procedure X differ from 
standard diagnostic procedure Y in terms of outcome?” 

Subsequently, we argue that neuroimaging models could further 
enhance clinical research, with a collection of examples for each PICO 
category having been provided below. 

1.2.1. Population, patient, and/or problem 
One goal of fMRI-based diagnoses is to refine the categories of 

neuropsychiatric conditions (e.g., identify patient subgroups or in
dividuals at risk) and compare them to standard categories based on 
other clinical measures. By doing so, neuroimaging models might help 
improve patient group selection for the comparison of different disease 
trajectories (Grefkes and Fink, 2014), namely identifying patients 
particularly suitable for specific (non-)pharmacological treatments ac
cording to treatment response (Dunlop and Mayberg, 2014) or predict 
different treatment outcomes. Such models might also help identify in
dividuals at risk for certain diseases before the onset of clinical symp
toms and thus enable trials on early preventive treatment, which are 
desperately needed for neurodegenerative diseases, such as Alzheimer’s 
disease. 

1.2.2. Intervention/comparison 
fMRI-based measures or models can be tested against standard pro

cedures (e.g., prognosis based on clinical variables) according to 
whether they improve prognostic or classification accuracy. Some ap
plications of brain activity models have been shown to be clinically 
useful for assessing cortical functionality after stroke through trans
cranial magnetic stimulation combined with EEG (Tscherpel et al., 
2020), studying regional cerebral diseases to enable targeted treatment 
in epilepsy surgery (Jirsa et al., 2017), or predicting potential compli
cations of brain tumor resection (Woo et al., 2017). Furthermore, 
important research on the development of new treatments has aimed to 
uncover the neuronal mechanisms of neuropathologies, such as quan
tifying the local and global effects of medications (e.g., on neurotrans
mitters or neuronal excitability) on brain activity measured using fMRI. 
To address these concerns, next generation models require a systems 
medicine approach that possibly also involves animal models (Ren et al., 
2014). 

1.2.3. Outcome 
Models might help create surrogate neuroimaging-based endpoints, 

such as better regeneration of damaged brain areas determined through 
MRI, which complement pure clinical endpoints (Prentice, 1989), e.g., 
long-term functional recovery. By identifying presymptomatic changes, 
these neuroimaging endpoints could reduce the duration of clinical trials 
and increase statistical power. To this end, models must capture longi
tudinal changes in patients’ brain activity in order to characterize and 
determine disease outcomes. 

2. Current and emerging models for extracting information from 
fMRI 

Historically, research in modeling fMRI activity has followed two 
lines: one striving to reproduce and explain the spatiotemporal structure 
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of fMRI signals (e.g., at the whole-brain level) (statistical and biophys
ical models) and the other focused on extracting relevant information 
for the classification of patients and controls (decoding models). We now 
review these three broadly defined types of models in the context of 
functional brain networks. Their respective strengths with respect to 
clinical research objectives (as discussed in Section 1.2) pave the way for 
their combination (illustrated on Fig. 1 and discussed in Section 3). 

2.1. Statistical generative models: reproducing the BOLD signal and its 
relevant patterns 

Statistical models have long been used to evaluate the neuronal 
contribution to fMRI signals (Worsley et al., 1996, 1992). More recently, 
multivariate network models have been used to reproduce the structure 
of BOLD activity (Baldassarre et al., 2014; Bolton et al., 2018; Vidaurre 
et al., 2018). As illustrated in Fig. 1, the model parameters (e.g., network 
connectivity) are typically optimized to maximize the goodness of fit (see 
the vertical arrow), a measure of the match between empirical signals 
and their counterpart model signals. The model comes with hypotheses 
on the spatiotemporal structure of the observed data. Beyond goodness 
of fit, the model also adds value to clinical applications by determining 
how its estimated parameters can reliably reflect clinical conditions. 

2.2. Biophysical models: uncovering biological mechanisms  

Info box 1: Biophysical models 
Biophysical models aim to formalize the link between brain anatomy (i.e., structural 

connectivity), neuronal dynamics and hemodynamics in the generation of BOLD 
signals. The modelling of hemodynamics to link neuronal activity to fMRI signals is 
a major difference with statistical models, which directly work at the level of BOLD 
signals. However, there is no strict boundary between biophysical and statistical 
models, with several studies falling somewhat in between both models. For instance, 
studies can use dynamic networks to directly generate the BOLD signals without 

(continued on next column)  

(continued ) 

hemodynamics while constraining their architecture with anatomical data (Gilson 
et al., 2016). A benefit of hemodynamics-based models, as with dynamic causal 
modeling, is that they can accommodate deviations from the standard canonical 
hemodynamic response function, which is especially useful in neurovascular 
disorders such as stroke (Grefkes et al., 2008). 
With regard to model validation, many whole-brain biophysical models rely on 
functional connectivity rather than BOLD activation for model fitting (Deco et al., 
2013; Ritter et al., 2013). While functional connectivity is typically interpreted as 
neuronal communication between brain regions, its relationship with neuronal 
activity has been much less validated than BOLD activation that has been 
thoroughly studied, e.g., in animal models (Bartels et al., 2008; David et al., 2008; 
Ekstrom, 2010). Efforts in that direction have been done to relate the propagation of 
BOLD signals with directional interactions in the early visual system (Gravel et al. 
2020). We also note that recent animal studies have started to address the problem 
by comparing functional connectivity from fMRI and signals more directly related to 
neuronal activity like calcium imaging in mice (Chen et al. 2017; Lake et al. 2020). 
Likewise, relating functional connectivity to biological variables, such as synaptic 
efficacies, extends well beyond the general concept of communication between 
brain areas (Buckner, 2010).  

Biophysical models, such as the dynamic causal model (Friston et al., 
2003), the dynamic mean field model (Deco et al., 2013, Kobeleva et al., 
2021a) or The Virtual Brain (Schirner et al. 2022), have been designed to 
elucidate the structure of observed BOLD activity, often formalizing the 
relationship of anatomical (or structural) connectivity with neural dy
namics and/or relating neural dynamics to hemodynamics (Woolrich 
and Stephan, 2013, Glomb et al. 2021). Further details about their 
structure can be found in info box 1. In parallel, such models have been 
oriented towards explaining neuropathological BOLD activity by 
involving specific molecular mechanisms and biological variables, 
which aims to link with the fields of ‘computational psychiatry’ (Ste
phan and Mathys, 2014; Wang and Krystal, 2014) or ‘computational 
neurology’ (Maia and Frank, 2011). 

As an example, recent biophysical models have designed the dy
namics of neuronal populations mechanisms in a way that incorporate 

Fig. 1. Schematic representation of models applied to functional magnetic resonance imaging data. In a statistical or biophysical model (red box), parameters x are 
typically tuned to best reproduce the structure of Blood Oxygen Level-Dependent (BOLD) signals y (blue box), maximizing, for example, the likelihood P(y|x) of 
observing BOLD signals for parameterization x (see the vertical arrow). Predictive models aim to predict clinical labels z (green box; here, two categories are 
represented by different colored symbols) based on features y derived from BOLD signals (often a function applied to them, such as correlations for functional 
connectivity, instead of directly using the original signals themselves) or from the estimated model parameters x. Here P(z|…) refers to the probability that a new 
sample subject would belong to the category labeled z given the subject’s features (y or x). In practice, this probability P(z|…) is estimated (and validated) using data 
with known labels, for example, by training a classifier. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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information from gene expression maps (Murray et al., 2018) or 
neurotransmitter concentration maps (Demirtaş et al., 2019). Their goal 
is to mechanistically describe the effect of local variables that can be 
measured from positron emission tomography or postmortem data on 
local and global brain activity measured using fMRI. This ability to trace 
back the effects of biological variables on fMRI measurements is an 
important part of interpretability as discussed in section 3.3. 

Table 1 provides a comparison of different types of biophysical 
models with a focus on parameterization. We distinguish estimated 
parameters, which can be used as a signature of the brain activity state 
and are adjusted to fit the model to the observed fMRI signals, from 
other parameters that are derived directly from empirical data. Note that 
such models often involve mechanisms with additional free parameters, 
which may come from other studies in fundamental science or are 
heuristically determined. The models also differ in terms of number and 
types of estimated parameters, which determines the potential richness 
of the respective brain state signatures. 

2.3. Decoding models: From fMRI images to clinical phenotypes 

A short introduction about decoding models can be found in info box 
2.  

Info box 2: Decoding models 
Decoding models have been increasingly used in machine learning to predict clinical 

or cognitive variables from high-dimensional fMRI data (Gao et al., 2019; 
Varoquaux et al., 2017). Practically, such models aim to map input features, which 
may include connectivity measures derived from BOLD signals or estimated 
parameters in a model as described earlier (see horizontal arrows in Fig. 1), to a label 
(e.g., a phenotype or diagnosis) or a score (e.g., cognitive test performance). The 
corresponding mathematical function from features to labels or scores is initially fit 
onto a training set of data. The generalizability of the prediction is then assessed 
using its performance on separate data (test set) in a process called cross-validation 
(Varoquaux et al., 2017).  

In the same way that biophysical and statistical models are concerned 
with the goodness of fit of BOLD signals, decoding models are assessed 
with respect to their prediction performance, which we also refer to as 
predictability. A robust decoding model that predicts a phenotype should 
ideally provide information regarding which features contribute to the 

classification, another aspect of interpretability mentioned earlier 
(Pallarés et al., 2018; Yao et al., 2018). For instance, good motor re
covery after a stroke can be classified according to primary motor cortex 
activity within the lesioned hemisphere measured using BOLD-fMRI on 
the first week after the stroke (Rehme et al., 2015). 

Apart from using connectivity measures directly derived from BOLD 
data, region-wise or seed-based voxel-wise like functional connectivity 
(Naselaris et al., 2011; Richiardi et al., 2011), more complex metrics (e. 
g., time-varying functional connectivity) can be used as input for 
decoding models (Du et al., 2018). Decoding models can be applied to 
parameters estimated from statistical models, in which the model 
inversion can be seen as a preprocessing step (see the bottom horizontal 
arrow in Fig. 1). For instance, the Graphical Lasso can extract pairwise 
partial correlations among BOLD signals (Hoyos-Idrobo et al. 2017), 
resulting in a biomarker formed by a pair of regions with condition- 
specific changes in functional connectivity. More biologically-driven 
approaches can be designed by feeding machine learning tools with 
estimated parameters (e.g., effective connectivity) in a whole-brain 
dynamic model to predict subject individualities or cognitive states 
(Brodersen et al., 2011; Gilson et al., 2019; Pallarés et al., 2018). As a 
representation of BOLD signals, the estimated parameters may not only 
improve classification, but also yield a distinct interpretation (e.g., 
restricting the effective connections to anatomically connected regions). 

3. Navigating between biophysical and decoding models: 
potentials and pitfalls 

To address relevant questions in clinical research mentioned in 
Section 1 and establish clinically relevant and efficient biomarkers, we 
propose to bridge the gap between biophysical network and decoding 
models in order to combine their respective strengths, good interpret
ability together with good predictability. We now discuss the potentials 
and pitfalls of such unified modeling in the clinical environment, 
focusing on fMRI models. 

Table 1 
Building elements of biophysical models. Biophysical models involve parameters of different types: estimated by optimizing the model (from the fMRI data), directly 
derived from the data (other than fMRI), or free (e.g., from other experiments and not related to the fMRI data fitted by the model). Models can differ in terms of 
number and types of estimated parameters, ranging from one or two global parameters to hundreds or thousands of inter-regional connectivity estimates for models. 
Depending on combination of building elements, models can be used for different use-cases, e.g., linking structure and function in resting state, understanding task- 
evoked interaction of brain regions or, if additional neuroimaging information is included, combining neuroimaging modalities. An example use-case for modeling can 
be found in Fig. 2.  
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3.1. Robust decoding needs big data with reliable labels 

Decoding models need accurate clinical labels, which can be chal
lenging in itself. In neurology, a combination of medical history, phys
ical examination, and laboratory tests has been used to provide standard 
classifications of symptoms and diseases that can be utilized as outcome 
parameters or labels (Bachmann et al., 2005). However, even gold 
standard clinical evaluations may have limited accuracy, which conse
quently limits the accuracy attainable by machine learning models. This 
concern is amplified in rare non-genetic neurological diseases. To start 
with, diagnosis is often not standardized (Haendel et al., 2020; Klimova 
et al., 2017), which affects the positive predictive value of a test (i.e., the 
proportion of true positive results within all positive test results) 
depending on the prevalence of a disease. Therefore, tests for rare dis
eases may show a relatively high absolute number of false positives 
despite excellent test sensitivity (Kohn et al., 2013; Lutgendorf and Stoll, 
2016). Consequently, positive predictive values for rare diseases may 
drop drastically, subsequently compromising the labels for machine 
learning techniques. 

In psychiatry, establishing reliable diagnostic labels is even more 
challenging considering that laboratory tests are often lacking and pa
tients typically present within a wide range of disease severities. Thus, 
labeling is subject to the interpretation of clinicians who rely mostly on 
symptom-based diagnostic criteria (as proposed in disease classification 
manuals provided by different organizations, such as the Diagnostic and 
Statistical Manual of Mental Disorders, DSM). 

However, the imperfection of clinical labels is not, by itself, an 
obstacle in developing useful neuroimaging biomarkers. Measures, such 
as repeated testing, can certainly improve the reliability of a training set 
given a sufficient sample size. Provided that such repeated tests do not 
have considerable variability, a classifier can learn to do better than the 
original clinical labels and thus enhance diagnostic accuracy (Wicken
berg-Bolin et al., 2006). 

Small sample sizes have been a well-known problem for machine 
learning techniques (Chu et al., 2012; Varoquaux, 2017). For complex 
data, machine learning techniques can only achieve good accuracy by 
using very large datasets to train the corresponding decoding model 
(Huf et al., 2014), similar to automated image recognition approaches 
using deep learning (Nguyen et al., 2020). Big data for neuropsychiatric 
diseases thus requires the alignment of diverse datasets in terms of 
neuroimaging (acquired using different scanners or protocols), as well as 
diagnostic criteria and clinical measures (Abraham et al., 2017; Karrer 
et al., 2019; Pomponio et al., 2020; Tax et al., 2019; Westeneng et al., 
2018; Yamashita et al., 2019). Big-data approaches may not be easily 
applicable to rare or severe diseases, for which a sufficient number of 
cases is difficult to obtain. As such, a potential solution might be to 
group patients according to symptoms across different diagnostic cate
gories or increase the number of measurements per subject to compen
sate for the small sample sizes (Krischer et al., 2014). 

3.2. Personalized medicine requires tackling heterogeneity 

A one-size-fits-all model of a disease might be helpful for under
standing general disease pathophysiology and developing novel thera
peutic targets at a group level. However, establishing a prognosis that 
can be useful across various patients requires a given model to integrate 
the evolution of different disease phenotypes and relevant patient 
characteristics. This means that the identifiability of the model param
eters should be accessible in practice from data obtained from a single 
patient over, at most, a few fMRI recording sessions considering the 
well-known issues of signal-to-noise in fMRI data (Gorgolewski et al., 
2013). 

In a clinical context, fMRI studies easily suffer from selection bias. 
Most clinical trials have strict inclusion and exclusion criteria, resulting 
in patient groups that are not representative of the general patient 
population. In the field of stroke research, for instance, fMRI studies 

typically lack patients with very severe neurological deficits, given their 
inability to provide informed consent for a scientific study or lay still for 
a certain amount of time inside the scanner (Dani et al., 2008; Hotter 
et al., 2017; Kobeleva et al., 2021b). Therefore, many conclusions ob
tained from patient fMRI studies only apply to conscious, cooperative, 
mildly-to-moderately affected patients. Studies of neurodegenerative 
diseases face similar external-validity challenges: movement disorders 
some patients (e.g., tremors) interfere with MRI acquisition. Hence 
findings from fMRI clinical trials might be less applicable to patients 
with very severe neurological symptoms or atypical disease phenotypes 
(Mariani et al., 2019). Developing models on less severe symptoms that 
extrapolate to severe cases could be used to infer clinical outcomes for 
these (Salvalaggio et al., 2020). 

Beyond the selection bias of fMRI studies, a given study cohort often 
displays a large heterogeneity. Numerous patients suffer from multiple 
diseases (e.g., a patient with dementia having recurrent strokes, a 
pacemaker, and lung cancer or a patient with depression, as well as 
personality and addiction disorders). The problem with non- 
homogeneous samples is further complicated by inter-individual dif
ferences in drug treatment, with some drugs interfering with BOLD 
signals such as certain neuroleptics (Röder et al., 2010), as well as the 
complex interactions resulting from taking multiple drugs. Such multi
morbidity and polypharmacy has remained a considerable problem in 
clinical studies, that can only be addressed through very large samples, 
which make studies exceedingly expensive, long-lasting, and compli
cated to organize. One important step to address such concerns has been 
population-based approaches like the UK Biobank study (Elliott et al., 
2018; Ward et al., 2019) and the use of normative models (Marquand 
et al., 2016). However, remains the problem of the considerably large 
fraction of patients that cannot be included into an MRI study due to 
contraindications, such as non-MRI-compatible pacemakers, metal 
splints, or implanted electrodes for deep brain stimulations. For such 
patients, other techniques for obtaining brain activity should be 
explored, such as near infrared spectroscopy or EEG-based techniques. 
Different neuroimaging signals must then be aligned, for instance using 
functional connectivity from fMRI and EEG in the same analysis. 

Lastly, the fMRI signal can be altered in conditions with neuro
vascular alterations as encountered in the case of atherosclerosis, lead
ing to narrowing or occlusion of vessels. These conditions can be 
frequently encountered in older populations and may be clinically silent 
and cannot be inferred from BOLD-sensitive images (e.g., gradient-echo 
T2*) post-hoc. 

Therefore, fMRI studies with patients or older individuals should 
ideally always include diagnostic scans to ensure the validity of BOLD 
signals computed from fMRI volumes. Currently, using anatomical in
formation (e.g., atrophy) plotted onto a normative connectome to pre
dict functional connectivity patterns can be used as a workaround (Corp 
et al., 2019; Horn et al., 2017). Ideally, future models should incorporate 
corrected function of the hemodynamic response in the case of lesions or 
atrophy. 

3.3. Bridging interpretability and predictability to uncover potential 
therapies for pathological neuronal mechanisms 

Beyond giving accurate prediction, models for clinical research 
should also be interpretable (see Fig. 2). We discuss two distinct 
meanings of interpretability: understanding the important features and 
unraveling biological mechanisms. The first meaning of interpretability 
can be achieved by understanding informative features of decoding 
models and leads to the identification of relevant brain regions for dis
ease understanding (i.e., those that show abnormal brain function) 
(Abraham et al., 2017; Hoyos-Idrobo et al., 2018). For instance, inter
pretable architectures can reconstruct inverse images of interesting la
bels from deep neural networks into brain anatomical regions (Böhle 
et al., 2019). This type of interpretability has several benefits in the 
context of translational research. It can be used to detect hidden biases 

X. Kobeleva et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 36 (2022) 103262

6

through careful model validation by applying the model to new data (e. 
g., the influence of other pathophysiological processes). Furthermore, 
the evaluation and correction of potential prediction errors allows cli
nicians to consider disease severity and adverse effects when choosing 
the appropriate treatment (e.g., delaying treatment due to the risk of 
developing a brain tumor vs undergoing a risky treatment for migraine 
headache). 

The second meaning of interpretability, in the sense of mechanistic 
interpretation, can be achieved by integrating biologically meaningful 
parameters obtained from other imaging modalities (e.g., neurotrans
mitter concentration) into the modelled brain dynamics. This is key to 
developing pharmaceutics based on the manipulation of physiological 
mechanisms that lead to the altered brain dynamics. However, to be 
used in clinical research, models including different data sources for 
parameter estimation should be aligned. As an example, effective con
nectivity may quantitatively and qualitatively differ according to 
whether or not the model includes neurotransmitter concentrations. In 
biophysical whole-brain models, the structure of empirical BOLD signals 
(e.g., functional connectivity) can be determined via the estimated pa
rameters whose numbers may vary dramatically across different models. 
For instance, effective connectivity in a whole-brain model can provide a 
rich representation of BOLD dynamics involving thousands of estimated 
weights (Frässle et al., 2018; Gilson et al., 2019), similar to the statistical 
models mentioned previously. In contrast, model fitting may involve 

only a few parameters, such as a single global coupling parameter in the 
original mean field model (Deco et al., 2013), or several parameters that 
determine highly nonlinear nodal dynamics (Proix et al., 2017; Pohl 
et al. 2022). 

In any case, such biophysical models have to be identifiable with 
respect to their fitting procedure (Wilson and Collins, 2019). This should 
be checked using parameter recovery (e.g., creating simulated data with 
known parameters and fitting a model to estimate these parameters), to 
ensure that the estimated parameters in the model unambiguously 
represent the reproduced BOLD structure. These estimated parameters 
can be used as features in decoding models, which establishes solid in
terpretations on brain activity. Identifiability is all the more crucial when 
parameters are estimated in increasingly complex models, such as those 
that aim to comprehensively describe pathological alterations of 
neuronal activity involving neurotransmitters (see Table 1). Free pa
rameters with no relationship to the data are often present when linking 
diverse data types in a model, which may affect the estimation of other 
parameters and necessitates control using robustness checks. These 
checks ensure similar results across different variations of biophysical 
models and generalizability of estimated parameters using out-of- 
sample data. 

Given robust parameters across different data types, biophysical 
models could be synergistically combined with decoding models. In that 
way their respective strengths can be combined in a next generation of 

Fig. 2. Combining prediction and interpretation by using model parameters from biophysical models as input parameters of decoding models. A. As an example use- 
case we consider a biophysical model of an altered network interactions due to a stroke (blue column). Here, different lesion locations or sizes may have differential 
effects on network dynamics (in terms of altered model parameters; note that here only one dimension is represented). The resulting parameter signature (as a 
representation of BOLD signals) can be used as input features for a decoding model (orange column) to predict the clinical outcome after a stroke (green column). This 
also enables a clinically meaningful model comparison, for instance to assess whether a particular biophysical model improves interpretability while retaining 
sufficient predictability as compared to more phenomenological approaches like FC analysis, in order to achieve the desired sweet spot between interpretability and 
predictability. B. Besides interpreting and predicting the effect of lesions, biophysical models can further be used to evaluate the effects of different treatments, e.g., 
TMS of a directly affected region versus a third-party modulatory brain region (blue column). In both cases, as before, the effect of the different treatments can be 
quantified by feeding the parameters of the biophysical model as features for the decoding model (orange column), for instance to identify the reorganization of 
interactions in subnetworks in relation to clinical variables. This pipeline thus potentially allows for a comparison between different mechanistic model-based in
terpretations of treatments and their effects on patients’ symptoms (green column). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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biophysical models that inform on the biological mechanisms which are 
relevant for prediction, as illustrated in Fig. 2. This will allow for a 
translation from pure machine-learning diagnosis to a further level of 
model-based prediction. In our view this new generation of models will 
be able to achieve a balance between interpretability (both in terms of 
identification of relevant features and mechanistic interpretation) and 
predictability of clinical outcome. The key is to identify biologically 
meaningful data-based and estimated parameters that represent the 
brain activity state. Using these estimated parameters as features for 
decoding models can build dynamical signatures. A step in that direction 
has been made in the field by designing models of effective connectivity 
that give good prediction accuracy (Brodersen et al., 2011; Frässle et al., 
2018; Gilson et al., 2019). As an example, the effective connectivity in 
an anatomically constrained model can quantify the modulation of 
white-matter pathways in a condition-specific fashion (related to a 
neuropathology or cognitive task). This improves the interpretation of 
the model parameters as compared to FC that describes the statistical 
relationship for all possible pairs of brain regions, irrespective of 
whether they are anatomically connected or not. It can also enhance the 
predictability as measured by the decoding accuracy, by reducing the 
number of estimated parameters (i.e., by taking into account anatomical 
pathways when estimating connections between regions). 

In the illustrative example for stroke in Fig. 2A, patients exhibit le
sions at different locations and of various sizes. Prognosis consists in 
predicting the future evolution of the patient, e.g., his/her recovery in 
terms of cognitive deficits after a year from fMRI signals acquired during 
the acute phase (a few weeks after the stroke). The goal of the bio
physical model is to infer parameters that characterize the neuronal 
dynamics and interactions from the empirical fMRI, as recently 
demonstrated using effective connectivity for cortico-cortical commu
nication (Adhikari et al. 2021). Going a step further, the potential effect 
of different treatments could be evaluated using a biophysical model to 
identify treatment-induced changes in cortical subnetworks from the 
estimated parameters, and using subsequently these parameters in a 
decoding model to test the effect on the patient’s recovery or disease 
progression (i.e., expected symptom severity in the future). In both 
cases, the combined modeling makes a triple link between the pertur
bation (stroke lesion, TMS treatment), the cortical network dynamics 
and the patient’s condition. 

Using these new types of models will allow exploring meaningful 
therapeutic pharmacological or interventional targets beyond the 
localization of brain regions with strongest changes in BOLD activity or 
functional connectivity interactions. Of course, increasing the 
complexity of biophysical models to incorporate e.g., many mechanisms 
like excitation-inhibition balance and neuromodulation leads to highly 
non-linear network dynamics and the estimation of many parameters is 
notoriously difficult in this case, especially for connectivity parameters. 
Therefore, the challenge lies in carefully designing the model such that it 
remains tractable for parameter estimation (necessary for predictability) 
while combining biologically relevant mechanisms (for interpret
ability). Importantly, to ensure superiority of model-based prediction 
against other predictive pipelines, predictability of a model should be 
tested against a gold standard (if it exists) or against/ in combination 
with other neuroimaging modalities (e.g., atrophy or structural mea
sures- which are easier to obtain than model-related features). 

4. Perspective: Bringing models into clinical practice 

Looking to the future, large neuroimaging datasets covering many 
diseases will bring better models of fMRI activity, that contribute to 
improving diagnosis and treatment in neurology and psychiatry. Models 
suited to clinical applications must not only capture better BOLD ac
tivity, for instance via functional connectivity, but also the influence of 
other biological factors, such as neurotransmitters, proteins, and genes. 
A critical limitation for clinical applicability lies in the noisy and het
erogeneous nature of patients’ data. As models improve to capture this 

heterogeneity, they will gradually become useful tools for clinicians, 
supporting decision making, although they should not replace clinical 
reasoning. They could constitute an additional element within a set of 
established diagnostic procedures and might increase the certainty of a 
diagnostic classification or risk assessment through the use of multi
modal decision support systems. To improve functionality, these models 
should be connected with more complete electronic health records to 
extract additional patient data and visually present the results of the 
analysis, for example, through secure and flexible web services (Khalilia 
et al., 2015). Broader involvement would require additional training for 
dedicated medical personnel in model-based data analyses, in the same 
manner as MRI physicists. 

Using increasingly sensitive models of brain activity for clinical 
practice has opportunities for early treatment but also ethical conse
quences. Similar to the situation of presymptomatic genetic testing, 
doctors and patients might face the challenge of discussing a diagnosis of 
a presymptomatic neuropsychiatric disease based solely on a possibly 
complex model without any visible brain pathology. What’s more, there 
are direct consequences on the daily life of patients affecting career 
choice, family planning, and health insurance policies, as well as have 
psychological consequences (Godino et al., 2016; Tibben et al., 1997). 
Therefore, ethical guidelines must be developed alongside the models to 
assess the potential benefit and risks of communicating the model results 
to the patients. 
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