000912566 001__ 912566
000912566 005__ 20240712113247.0
000912566 0247_ $$2doi$$a10.1021/acsanm.2c04000
000912566 0247_ $$2Handle$$a2128/33336
000912566 0247_ $$2WOS$$aWOS:000889594000001
000912566 037__ $$aFZJ-2022-05739
000912566 082__ $$a540
000912566 1001_ $$0P:(DE-Juel1)176327$$aPark, Seongeun$$b0
000912566 245__ $$aIridium–Nickel Nanoparticle-Based Aerogels for Oxygen Evolution Reaction
000912566 260__ $$aWashington, DC$$bACS Publications$$c2022
000912566 3367_ $$2DRIVER$$aarticle
000912566 3367_ $$2DataCite$$aOutput Types/Journal article
000912566 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671796221_29187
000912566 3367_ $$2BibTeX$$aARTICLE
000912566 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000912566 3367_ $$00$$2EndNote$$aJournal Article
000912566 520__ $$aIridium is considered the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in acidic media owing to its considerably high activity and stability, yet it is a raw material that is expensive and rare. Here we present a synthesis of a bimetallic hollow aerogel structure based on iridium and nickel prepared by a very simple and environmentally friendly method. Our electrocatalyst was evaluated for the OER in a single electrolysis cell, and it showed an improvement in electrocatalytic performance over time, reaching the current density of commercial IrO2 after 500 h of the stability test, despite half the catalyst loading. Our innovative synthesis approach provides the flexibility to tailor and improve the aerogel structures for other electrochemical devices as well, for example, photoelectrolysis, sensors, and more. In addition, we believe that this study can lead to a better understanding of the fundamental behavior of bimetallic electrocatalysts consisting of mixed compositions with transition metals.
000912566 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000912566 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000912566 7001_ $$0P:(DE-Juel1)180228$$aUtsch, Nikolai$$b1
000912566 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b2
000912566 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b3$$eCorresponding author
000912566 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000912566 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.2c04000$$gp. acsanm.2c04000$$n12$$p18060–18069$$tACS applied nano materials$$v5$$x2574-0970$$y2022
000912566 8564_ $$uhttps://juser.fz-juelich.de/record/912566/files/acsanm.2c04000.pdf$$yRestricted
000912566 8564_ $$uhttps://juser.fz-juelich.de/record/912566/files/Park_Seongeun.pdf$$yPublished on 2022-11-18. Available in OpenAccess from 2023-11-18.
000912566 909CO $$ooai:juser.fz-juelich.de:912566$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000912566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176327$$aForschungszentrum Jülich$$b0$$kFZJ
000912566 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176327$$aRWTH Aachen$$b0$$kRWTH
000912566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180228$$aForschungszentrum Jülich$$b1$$kFZJ
000912566 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180228$$aRWTH Aachen$$b1$$kRWTH
000912566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b2$$kFZJ
000912566 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)145276$$a IEK-14$$b2
000912566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b3$$kFZJ
000912566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000912566 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000912566 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000912566 9141_ $$y2022
000912566 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000912566 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000912566 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000912566 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL NANO MATER : 2021$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-24
000912566 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL NANO MATER : 2021$$d2022-11-24
000912566 920__ $$lyes
000912566 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000912566 9801_ $$aFullTexts
000912566 980__ $$ajournal
000912566 980__ $$aVDB
000912566 980__ $$aUNRESTRICTED
000912566 980__ $$aI:(DE-Juel1)IEK-14-20191129
000912566 981__ $$aI:(DE-Juel1)IET-4-20191129