001     912566
005     20240712113247.0
024 7 _ |a 10.1021/acsanm.2c04000
|2 doi
024 7 _ |a 2128/33336
|2 Handle
024 7 _ |a WOS:000889594000001
|2 WOS
037 _ _ |a FZJ-2022-05739
082 _ _ |a 540
100 1 _ |a Park, Seongeun
|0 P:(DE-Juel1)176327
|b 0
245 _ _ |a Iridium–Nickel Nanoparticle-Based Aerogels for Oxygen Evolution Reaction
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671796221_29187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Iridium is considered the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in acidic media owing to its considerably high activity and stability, yet it is a raw material that is expensive and rare. Here we present a synthesis of a bimetallic hollow aerogel structure based on iridium and nickel prepared by a very simple and environmentally friendly method. Our electrocatalyst was evaluated for the OER in a single electrolysis cell, and it showed an improvement in electrocatalytic performance over time, reaching the current density of commercial IrO2 after 500 h of the stability test, despite half the catalyst loading. Our innovative synthesis approach provides the flexibility to tailor and improve the aerogel structures for other electrochemical devices as well, for example, photoelectrolysis, sensors, and more. In addition, we believe that this study can lead to a better understanding of the fundamental behavior of bimetallic electrocatalysts consisting of mixed compositions with transition metals.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Utsch, Nikolai
|0 P:(DE-Juel1)180228
|b 1
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 2
700 1 _ |a Shviro, Meital
|0 P:(DE-Juel1)165174
|b 3
|e Corresponding author
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
773 _ _ |a 10.1021/acsanm.2c04000
|g p. acsanm.2c04000
|0 PERI:(DE-600)2916552-0
|n 12
|p 18060–18069
|t ACS applied nano materials
|v 5
|y 2022
|x 2574-0970
856 4 _ |u https://juser.fz-juelich.de/record/912566/files/acsanm.2c04000.pdf
|y Restricted
856 4 _ |y Published on 2022-11-18. Available in OpenAccess from 2023-11-18.
|u https://juser.fz-juelich.de/record/912566/files/Park_Seongeun.pdf
909 C O |o oai:juser.fz-juelich.de:912566
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176327
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)176327
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180228
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)180228
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145276
910 1 _ |a IEK-14
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL NANO MATER : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL NANO MATER : 2021
|d 2022-11-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21