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Belief propagation (BP) is well-known as a low complexity decoding algorithm with a strong
performance for important classes of quantum error correcting codes, e.g. notably for the quantum
low-density parity check (LDPC) code class of random expander codes. However, it is also well-
known that the performance of BP breaks down when facing topological codes such as the surface
code, where naive BP fails entirely to reach a below-threshold regime, i.e. the regime where error
correction becomes useful. Previous works have shown, that this can be remedied by resorting to
post-processing decoders outside the framework of BP. In this work, we present a generalized belief
propagation method with an outer re-initialization loop that successfully decodes surface codes,
i.e. opposed to naive BP it recovers the sub-threshold regime known from decoders tailored to
the surface code and from statistical-mechanical mappings. We report a threshold of 17% under
independent bit-and phase-flip data noise (to be compared to the ideal threshold of 20.6%) and a
threshold value of 14% under depolarizing data noise (compared to the ideal threshold of 18.9%),

which are on par with thresholds achieved by non-BP post-processing methods.

a fast and efficient way to avoid accumulation of errors.
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A class of codes which recently received a lot of at-
tention are Quantum Low-Density Parity-Check codes
(qLDPC codes). Given an asymptotically constant rate
r = %, they are proven to achieve fault-tolerance with
only constant overhead. That is, the ratio of total num-
ber of qubits used in the fault-tolerant protocol to the
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number of qubits in a non-fault tolerant circuit is asymp-
totically constant for increasing code size [I]. Another
important quantity for error correction is the minimum
distance. It is the minimum weight (i.e. the number of
qubits involved) of a logical operation on the codespace.
Naturally, a large distance implies a better protection
against errors. Quantum error correcting codes are called
good if their rate is constant and the minimum distance
scales linearly with increasing code size. The existence of
such codes, however non-qLDPC, has been proven for a
long time [2], [3]. Just last year, Panteleev and Kalachev
showed that it is also possible to construct asymptotically
good qLDPC codes []. Shortly after that breakthrough,
several other constructions achieved a similar scaling be-
havior [5], [6].

Another main ingredient of a fault-tolerant protocol is
an efficient decoding algorithm. Proofs of fault-tolerance
often consider the classical processing of the error correc-
tion cycle as free. In practice, this is not the case and
decoders should be fast enough to prevent additional er-
rors from occurring. There are a variety of decoders that
are highly adapted to the quantum code in use. In this
paper, we consider a generalization of a classical decoding
algorithm called belief propagation (BP) or sum-product
algorithm. For classical LDPC codes, it is amongst the
best decoding algorithms achieving error correction close
the the theoretical upper bound on the information trans-
fer, the Shannon capacity [7]. Recently introduced post-
processing methods to BP showed that these can in prin-
ciple decode various types of qLDPC codes [§], [9]. We
will focus on a single decoder that achieves the same at
a lower complexity.

This paper is structured as follows. First, we review
the basics of stabilizer error correction and quantum
LDPC codes. In section [Tl we show the relation of Gen-
eralized Belief Propagation (GBP) to standard BP and
adapt it for the decoding of quantum codes. Section [[T]]
applies GBP to surface codes and shows numerical evi-
dence of the emergence of a threshold.

A. Stabilizer Codes

Stabilizer codes are defined by an Abelian subgroup of
the Pauli group, S C P, with —1 ¢ S. The (commuting)
elements of the group are the stabilizers or parity checks
S € S. The codespace Q is then defined as the subspace
of the Hilbert space H" that is stabilized by §. For any
codestate |¢) it therefore holds that S [¢) = |¢) VS € S.
If there are n — k independent generators for S, [(S)| =
n — k, then the codespace is k-dimensional and encodes
k qubits.

Consider a Pauli error £ € P, occurring on a
codestate, |)) — E|¢). Such an error can be detected
by measuring all stabilizer generators if any of those an-
ticommute with the error, SE |¢) = —ES|¢) for some
S € S§. The binary outcome of all stabilizer measure-
ments is also called the syndrome or syndrome wvector

s € GF(2)"* with

_ _Joif [Bs]=0,
se = (B, 50) = {1 if {E,S.)=0. )

Here, s. denotes the measurement outcome of stabilizer
generator S, for ¢ =1,...,n. =n — k. This gives rise to
three different scenarios. We say there occurred a

1. detectable error if s # 0,
2. trivial error if s=0and F € S,
3. logical error if s=0and E ¢ S.

The last case represents the operators that map non-
trivially between codestates, the logical operators. They
can formally be defined using the centralizer of S in P,
Cp(S)={L:LS=SLVYS €S}, such that the logical
operators are £ = Cp(S) \ S. The (minimum) distance
of the stabilizer quantum code then corresponds to the
minimal weight of a logical operator,

d= ILn€1151|L| (2)

B. Decoding of Stabilizer codes

The decoding problem refers to the inference of a suit-
able correction from the measured syndrome. Because
trivial errors have zero syndrome, they define an equiva-
lence class for every detectable error. This feature called
degeneracy implies that corrections only need to be found
up to a trivial error. Due to the linearity of the codes, er-
rors up to weight ¢ = | 452 | can be uniquely matched to a
codestate and hence be corrected for. A simple decoder
involves a lookup-table which stores a suitable correc-
tion, for example the lowest-weight error matching each
measured syndrome. Making assumptions on the error
probabilities can improve this approach.

To that end, we consider Pauli error channels,

E(p)= Y p(E)EpE'. (3)

EeP,

Furthermore, we assume that the qubits are memoyless
and suffer from errors independently,

p(E) = [[ (Ey). (4)

We can write the probability of errors conditioned on the
observation of a syndrome using Bayes’ rule and the fixed
"evidence" p(s) =1 as

p(Els) = p(E)p(s|E) (5)

= ﬁp(Eq) ﬂé((E, Se) = s¢)- (6)
q=1 c=1



By 6(i = j) we denote the Kronecker delta d;;. It assigns
zero probability to all error configurations E that have
a commutation relation inconsistent with the measure-
ments.

In quantum error correction, the ideal decoder returns
an error guess which is in the most likely error class,
specified by all errors that are equivalent up to an element
of the stabilizer group. Given a syndrome, this mazimum
likelihood decoding identifies

E* € argmax p(ES|s) = arg max Z p(ES]s). (7)
£S ses

Note, however, that directly calculating the probabili-
ties for an error class (or even just storing the lookup-
table) quickly becomes intractable since there are are
2(n=k) different syndromes. For example, storing all syn-
dromes of a code defined by 42 independent stabilizer
generators requires approximately 550GB of memory.

Possibly more efficient decoding strategies rely on re-
laxed constraints such as finding the

e most likely error, i.e. identifying

E* = argmax p(FE|s) (8)
EcP,

or the
e qubit-wise most likely error, i.e. identifying

E* = {argmax p, (Eq|s)}Zil, (9)
E,eP1

where py(Eqls) = >, ., p(Els) are the single-qubit
marginal probabilities.

Note that these equations are agnostic of the quantum
nature of the underlying problem and have been studied
extensively in various settings including classical decod-
ing. Finding the most likely error is already less involved
than finding the most likely error class, but is still NP-
complete [10]. Calculating p(E|s) directly and even infer-
ring the marginal probabilities p,(E,|s) still involves an
exponential number of components. However, there ex-
ist algorithms that can under certain conditions calculate
the marginals in linear complexity O(n). This comes at
the cost that the qubit-wise most likely error might glob-
ally be inconsistent with the observed syndrome. Before
introducing such an algorithm, the belief propagation al-
gorithm, we fix the notation and graphical representa-
tions used throughout this paper.

C. Representation of Stabilizer Codes

Algebraic representation The stabilizer group and
most operations used in stabilizer error correction can
be mapped from the Pauli group to vector spaces over
finite fields (or Galois Fields), denoted by GF(q) with

q = {2,4} [11].

Figure 1. Tanner graph representation of the Steane code
in binary (left) and quaternary (right) representation. Purple
circles correspond to qubits, green squares to parity checks.
In the quaternary representation, blue edges correspond to
X-type checks and red edges to Z-type checks. Note that
since the Steane code is a CSS-code, the binary Tanner graph
splits into two disjoint graphs T = Tx U Tz.

In both cases, the Pauli word E is mapped to a vec-
tor e € GF(q) of length (3 — Z)n. The group operation
is mapped to element-wise addition on the finite fields,
EE' — e+ €. Commutation of two Paulis E, E’ can be
checked using the symplectic product denoted by x,

(E,E"Y — exe. (10)

The stabilizer generators are put in a parity check matriz
H c GF(2)(»=*)x2n or H € GF(4)(»~%)*" such that the
measurement of all stabilizers can be represented by the
symplectic matrix-vector product

Hxe=:s. (11)

The actual implementation in the binary and quaternary
framework can be found in App. [A]

Tanner graph representation Stabilizer codes can be
graphically represented as Tanner graphs, similar to clas-
sical codes [12]. These are bipartite graphs with two ver-
tex sets @ and C representing the qubits and the stabi-
lizer measurements/ parity checks respectively. The edge
set E consists of edges e = (¢, ¢) drawn between vertices
q € @ and ¢ € C if qubit ¢ is involved in the parity-
measurement of stabilizer c. Different types of Paulis
can be distinguished by coloring the edges. With this
correspondence, the parity-check matrix H is the biadja-
cency matrix or reduced adjacency matriz of the Tanner
graph T = (QUC, E).

Ezample: The Steane Code The Steane code [I3] is a
[[7,1, 3]]- quantum code with stabilizer generators

(S) = { X0 X1 X0 Xy, X1 XoX3X5, Xo Xy X5 X6, (12)
ZOZ12224,Z1Z2Z3Z5,Z2Z4Z5Z6}. (13)

In the algebraic representations, the parity check ma-



trices are
IEEERY
Hepo) = Hx 0 —|o0010111
@ 0 Hyz 0119610
0010111
(14)
and
SERERE:
Hx
HGF(4):|: — 0010111 (15)
wwwOwOO
WHZ OwwwOwo
O0wlwww

and Tanner graphs are shown in Fig. [T}

D. Low-Density Parity-Check Codes

Low-Density Parity-Check (LDPC) codes are families
of classical codes with a sparse parity-check matrix. The
most successful classical LDPC codes rely on random or
pseudo-random constructions of the parity-check matrix,
most notably Sipser and Spielman’s Ezpander Codes [14].
Their properties include a constant rate, a linear distance
and efficient decoders, which is often referred to as good
code [15]. This has led to try and construct quantum
versions of LDPC codes (qLDPC codes) in the hope of
obtaining good quantum codes with a constant rate and
distance linear in the number of qubits. In addition to
having good decoding properties, it was famously shown
by Gottesman that such codes, if they exist, enable fault-
tolerant quantum computation with only constant over-
head [1].

In general, qLDPC codes can be defined similarly to
classical LDPC codes as codes with a sparse parity check
matrix. This corresponds to quantum stabilizer codes
with stabilizer generators of low weight that is upper
bounded by a constant. In particular, a (d., d;)-gLDPC
code ensemble has parity checks measuring at most d.
qubits and every qubit is involved in at most d; syndrome
measurements. This broad definition includes a range of
well known codes like the surface codes. They are de-
fined on a lattice, therefore exhibit a high degree of sym-
metry and have only nearest-neighbor interaction [I16].
They have a minimum distance d « y/n but suffer from
a vanishing rate » — 0 as the number of qubits n — oo.
A more general construction, the hypergraph product
(HGP) codes, can achieve a constant rate r — 1 — g—:,
when based on good (e.g. random) classical codes [I7].

Very recently, a construction that builds on a G-lifted
product of expander codes over non-abelian groups G by
Panteleev and Kalachev were proven to achieve constant
rate and linear distance [4]. Similar constructions like the
Quantum Tanner Codes or codes from balanced product
of lossless expanders achieve the same [5], [6].

The advantageous properties of good qLDPC codes
manifest at large qubit numbers. For near future ap-
plications, a moderate number of qubits in the order of a

few hundred is realistic. It is therefore reasonable to fo-
cus on the less intricate hypergraph product construction
which we will briefly recap in the following.

Hypergraph Product Codes The hypergraph product
construction uses graph based arguments to derive quan-
tum codes from classical codes. For details refer to [17],
in the following considerations the construction rule for
the parity check matrices is sufficient.

Let H; € GF(2)™>*™ H, € GF(2)™2*"2 be parity
check matrices of classical codes Cy,Cs with dimension
k1 and ko. The Hypergraph Product (quantum) Code
Q = HGP(Cy,Cs) with parity check matrix H is a quan-
tum CSS code with parameters

[[77,1712 -+ (nl — kl)(ng - kg), k‘lkg, min(dl, dQ)H (16)

which has its parity check matrix constructed from the
classical parity check matrices as

_ (Hx 0
H-—(0 H¢>’ (17)
Hy = (1,, ®H, H ®1,,,), (18)
H; = (H,®1,, 1,, ®HI). (19)

If we choose the base codes to have minimum distance
linear in its length, the HGP construction gives quan-
tum codes with minimum distance (y/n). The construc-
tion trivially preserves sparsity and therefore translates
a classical LDPC property to a quantum LDPC prop-
erty. Some choices of base codes give well known quan-
tum codes.

e Taking the classical (cyclic) repetition codes as
base gives the topological (toric) surface codes [16].
They have vanishing rate and a distance d < /n.
The graph based construction is shown in Fig. 2]

e Taking the product of two (good) classical expander
codes yields the quantum expander codes [18].
These codes have constant rate and a minimum
distance d o< y/n. A slightly simplified version uses
random classical codes that with some known prob-
ability have specific expansion properties. For such
codes, a well known and widely used method for
decoding is belief propagation.

II. GENERALIZED BELIEF PROPAGATION

We now introduce Generalized Belief Propagation due
to Yedidia, Freeman and Weiss (YFM) [19]. We then
show how a decoder for quantum codes can be con-
structed from that.

The Tanner graph introduced in Sec. [[C] can also be
thought of as an instance of a factor graph representing
a joint probability distribution over factors f [20],

px) = 5 T[ felxo) (20)



Figure 2. Graphical representation of the hypergraph prod-
uct construction.The cartesian graph product of the Tanner
graphs of two repetition codes (left) yields the distance-3 sur-
face code (right) using the rules shown in the middle and
explained in app.

In a physical system in thermal equilibrium, Boltzmann’s
Law gives the probability of a state,

1
- Ee-ﬂﬂx) with Z =Y e #709. (21)

xEP

p(x)

P is the space of all possible states x and [ the inverse
temperature which we set to 1 in the following. A con-
nection between the two can be drawn by identifying the
probability distributions and therefore defining an energy
E(x) of a state x of the factor graph to be

E(x) = =3 In fulxo). (22)

The ultimate goal in quantum decoding is to maximize
the probability distribution of the errors. To that end,
we will first motivate the method of (G)BP by giving a
review of variational methods.

A. Variational Methods in Statistical Mechanics

The paradigmatic example of a variational method in
quantum mechanics is the Ritz method [2I]. Here, the
setting is that we are given a Hamiltonian and the task is
to find its ground-state. Given that this task is in general
computationally hard already for the simplest non-trivial
practically relevant Hamiltonians, it is fruitful and prac-
tical to develop systematic methods to construct trial
wavefunctions that approximate the ground state wave-
function while retaining computational feasibility. The
fundamental insight here is that the energy expectation
value of the problem Hamiltonian evaluated on any state
is lower bounded by the expectation value of the true
ground state,

<wtrial| IA{ ‘wtrial> > <EO| I—AI |EO>7 (23)

which essentially only relies on the fact that we can
expand [¢) in the Hamiltonian eigenbasis, upon which
the statement follows immediately.

This paradigm of systematically constructing trial
states can be extended to mixed states and finite temper-
ature. The role of energy is taken over by the (Helmholtz)
free energy F' = E — TS = —% log Z, where S is the

entropy and Z = tr exp(—BfI) the partition function.

With respect to free energy, any trial state fulfils the Bo-
goliubov inequality

trﬁ’pmal > trﬁ’pc. (24)

Note that this contains the Rayleigh-Ritz inequality in
the zero temperature limit. It can be proved by exploit-
ing the Gibbs inequality

tr[Alog A — Alog B] > 0, (25)

which holds for any A, B > 0 provided trA = tr B.
Plugging in the canonical ensemble (or Gibbs state)

Pe = exp(fﬁj':[> /Z for B leads to

_S(ptrial) + ﬁtr I:Iptrial + IOg Z 2 07 (26)

which can be rearranged into the Bogoliubov inequality,
stating that the free energy of any trial density matrix
Ptrial 18 lower bounded by the free energy of the canonical
ensemble. This permits the extension of the variational
principle to mixed states, where we now try to approxi-
mate the Gibbs state by a trial density matrix. Since for
the remainder of the present manuscript, we will be deal-
ing “only” with probability distributions, we point out the
rather trivial fact that the above inequality in particular
also holds when H is diagonal and the density operators
are simply multivariate probability distributions.

B. Minimization of the Free Energy

For a variational ansatz, we introduce the trial proba-
bility distribution, the belief b(x). Equivalent to Eq.
it holds that the free energy of such a trial probability
distribution is lower bounded by the free energy of the
real distribution, i.e.

F(b) :=U(b) — S(b) > Fy (27)
> bx)E(x)+ > b(x)Inb(x) > —InZ. (28)

xeP xeP

Here, U(b) is the (variational) average energy and S(b)
the (variational) entropy of the trial state. Plugging in
the definition of the energy gives
b(x)
FO) = Fa + 32 b 25 = Fy + Dlblp) - (29)
xEP

with F(b) > Fpg and equality iff b(x) = p(x). D(b||p) is
the Kullback-Leibler divergence that gives a measure of
how close the trial distribution b is to the "true" distribu-
tion p. Because D(b||p) > 0 with equality iff b(x) = p(x),



a minimization procedure of D(b||p) with respect to b(x)
can exactly compute Fir and recover p(x)

Due to the intractability of a brute force approach, the
trial functions are generally restricted or approximated
by some factorized form. In the following, we review a
general approach to construction approximations, that
include the standard BP (Bethe-) approximation.

C. Derivation of the GBP Algorithm

Generalized Belief Propagation relies on region-based
approximations to the free energy. These are a class of
approximations to F'(b), where the approximate free en-
ergy is a function of beliefs over sets of variables, called
regions. From now on, we will call the factor graph the
Tanner graph, the factors check nodes and variables qubit
nodes, to facilitate the transition to the decoder based on
GBP.

We can define a region r of a Tanner graph as a set
of qubit nodes Q, and a set of check nodes C, such that
if a check node ¢ is in C,, then all neighboring qubit
nodes {I'(c)} are in Q,. The general idea is to define
regions of the factor graph and then approximate the
overall free energy with the sum of the free energies of all
the regions, subject to the conditions ensuring validity
which are shown in the following.

The thermodynamic quantities of a region are defined
as

e region energy

=D Wffe(x)] = Y lp(zg)]  (30)

ceCr qEQ,

e region average energy and region entropy

br) = be(x) Er(x,) (31)
- Z by (xr) In[br. (x;)] (32)

e region free energy
F.(b.) = U.(b.) — S-(by). (33)

When constructing regions, every check and qubit node
should be contained in some region. Since check and
qubit nodes might appear in multiple regions, it is neces-
sary to introduce counting numbers c, in order to ensure
that every check and qubit is only counted once when
summing over regions. They need to be chosen such that
for a set of regions R of a Tanner graph

Zcré(cecr):1Vc, Zcré(qEQT)21Vq.
reR reR
(34)

The overall, region-based approximate thermodynamic
quantities are then given by

Figure 3. Example of a region graph for one part of the
Steane code (corresponding to the classical Hamming code).
Green and violet numbers represent checks and qubits respec-
tively, counting numbers of the regions at top left corner. The
"shadow" of the red bordered region containing qubits 0, 1 is
shaded in blue, the "blanket" in orange. See [[LIC2| for the
definitions of shadow and blanket.

e region-based average energy and region-based en-
tropy

S,

r({br}) =
reR

SR({br}) = Z cr Sy

reER

({br}), (35)
({or 1), (36)

e region-based free energy

Fr({b,}) = Ur({br}) — Sr({:})- (37)

Note that not for every choice of regions, a valid set of
counting numbers can be found. To understand that,
consider a valid choice of regions V = {r;} with the cor-
responding counting numbers {¢; }, such that for qubit ¢,
Eq.[34) holds. Now adding any qubit ¢ to a region r’ with
counting number ¢, and ¢ ¢ r’ results in

ZCT g€ Q) =14c¢p, (38)

reR

which is only true iff ¢,» = 0. Also note that different
choices of regions can yield approximations of different
quality [22].

1. Region graph

Similarly to the Tanner graph, the relations of different
regions can be formalized in a graph theoretical frame-
work. To that end, YFM introduce the region graph
(RG). It is a labeled, directed graph G = (R,&,L) in
which each vertex corresponds to a region r € R. A
directed edge e € £ may exist from region r, to 7 if
(Q(re) U C(re)) C (Q(rp) UC(rp)), d.e. if the set of
constituents of the child is a subset of the parents con-
stituents. An example of a valid region graph for the
Steane code is shown in Fig.



2. Notation

We adopt the notation from [23] (which differs slightly
from YFM [19]) and adapt it to the error correction set-
ting,

e R: set of all vertices (=regions) of the region graph,
e &: set of all (directed) edges of the region graph,

e P(r),C(r), A(r), D(r): set of all parents, children,
ancestors, descendants of region r,

e Q. .C,: qubits and checks in region r,
e S(r) = D(r)Ur: "shadow" of the region r,
e B(r)=P(S(r))\ S(r): "blanket" of the region r.

3. Algorithm

We can recover the beliefs as approximations of the
true marginal probabilities by minimizing the region-
based free energy Fr({b.}). To that end, a Lagrangian
is constructed with the constraint that the beliefs shall
be consistent between every parent and child region, ¢.e.

Vr,peR,rCp = Z b,(xp) = b, (x,),  (39)

Xp \Xr

and a normalization constraint

VreR, > bp(x,)=1. (40)

Xy

Setting the derivatives of the Lagrangian with respect to
the beliefs equal to zero gives implicit equations for the
Lagrange multipliers and the beliefs, as shown in [24].
They can be solved iteratively and for that reason, the
Lagrange multipliers (or functions thereof) are often
called messages and the corresponding algorithms are re-
ferred to as message-passing algorithms [15].

In the following we show a more intuitive approach.
For that, assume that a belief of a region first contains
all local factors in that region. Messages from parent re-
gions p into child regions r will be of the form m,_,(x,).
In order to catch all possible dependencies, we consider
all messages that include some variables that are con-
tained in that region. However, over-counting of factors
should be prevented. This can be achieved by first con-
sidering all messages from parents into r. Secondly, we
take into account all messages from regions which are
not descendants of r but point into its descendants D(r).
This corresponds to the shadow and blanket of a region,
such that an ansatz for the belief of a region r can be
written as

bT(XT)(X H pq(xtI) H fc(xc) H maab(xb)-

qE€Qr c€Cr a€B(r),
beS(r)

(41)

By x. we denote the variables in the support of check
c. The message update rules follows from demanding
consistency between parent and child regions (Eq. ,
giving the Parent-to-Child-Algorithm. In the following,
the upper index () denotes the iteration step in order to
formalize the iterative procedure. Note that with a uni-
form initialization of the messages, the beliefs of parent-
and child regions p,r are incompatible at step ¢ = 0. We
therefore update the message from p to r by that mis-
match,

Z b;(ni) (Xp)

xP\xr 71— 00
- 1 42
bgj)(xr) (2
Z b;(ai)(xp)
(+1) (¢} — @) X \Xr
= mp—)r (XT) - mp%r(XT> bg}) (Xr) . (43)

The overlap of messages in the numerator and denomi-
nator can then be canceled out to reduce the number of
calculations. In that form, it becomes clear that consis-
tent beliefs correspond to converged messages.

D. GBP as a Decoder for Quantum Codes

In order to draw the connection to quantum decod-
ing, we identified the variables with the qubits. The fac-
tors, i.e. functional relations between qubits correspond
to Kronecker delta tensors with entries according to the
measured syndrome outcomes,

fe(xe) = 0[He xxc = 8. (44)

The state of the system x coincides with the Pauli
error F such that in the binary representation x =
(z1,22,...,22n,) € GF(2)*" with z, € {0,1}. In the
following, we denote the errors by x in order to avoid
confusion with the energy.

Note that the algorithm introduced above includes
both an implementation separating the X- and Z- part of
a CSS quantum code (GF(2)) and a combined (GF(4))-
implementation. The differences then lie in the length of
the vectors, the set of messages used to calculate region
beliefs and in the syndrome function. The latter uses
implementations of the symplectic product Eq. [A4] and
Eq.[A8]in the GF(2)- and GF(4)- framework respectively.

At each iteration, the parent-to-child algorithm defined
by Eq. [43] gives an estimate of the marginal probability
distribution of region r. These beliefs can be used to infer
a guess of the error inflicted on the qubits.

1. How to make a hard decision

The argumentum maximum (argmax) of the belief of
a region gives the most probable error on the regions



qubits. This is often referred to as making a hard deci-
sion. In the end, a hard decision has to be taken for every
qubit individually, whereas every qubit might be part of
multiple regions. A consistency of hard decisions from
different regions is only guaranteed if all messages are
converged. This is in general not the case while iterating
and also not guaranteed to happen at all. We therefore
have to find a strategy to combine the different contribu-
tions from the region beliefs to the overall hard decision.
A straightforward strategy to choose a hard decision is to
focus on the highest level regions Rg : {r € R : ¢, = 1}
and make a hard decision as

x() = U arg max b{") (x,.).
r€Ro xr

(45)

Naturally if the region-beliefs are not compatible, the
overall error guess will not be consistent with the ob-
served syndrome. In order to improve upon that, we find
a more promising strategy. Whenever the error guesses
from different regions on a single qubit are incompatible,
we compare the beliefs of their respective regions and set-
tle for the one with the largest belief. This corresponds
to decoding as

9 = (),
%W =  max argmaxb®(x,). (46)
:vqebgf) (xr) X

In the following, we first show how standard Belief
Propagation can be recovered from this more general ap-
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proach and then show two different strategies to cope
with further obstacles.

2. Bethe approzimation

One choice of regions called Bethe approzimation gives
an approximation equivalent to the standard BP algo-
rithm. It was originally introduced as sum-product de-
coding for (classical) LDPC codes by Gallager [25]. Later
it was independently rediscovered by Pearl as a method
to efficiently calculate single variable marginals on factor
trees [26]. Poulin and Chung first applied BP to the de-
coding of quantum codes [27]. For an introduction on the
BP algorithm, see for example [28], [9]. Here, we show
how to get the standard BP equations from the general-
ized ansatz.

For this purpose, construct two types of regions, large
and small. The large regions each contain a single check
node and its neighboring qubit nodes. The small regions
comprise single qubit nodes such that all qubit nodes that
have more than one parent have their own small region.
The counting numbers are ¢, jarge = 1 and ¢, gman = 1 —
>_qeo, |P(@)]. The beliefs of small regions {/;} and large
regions {L;} are given by

bCG{Li}(XC)O(H pq(xq)a[Hc*Xc:sc] H ma%b(«%’b)

a€Q. a€P[C(e)]\e
beC(c)
(47)
byei,3(2q) X pe(zq) H Me—sq(Zq)- (48)

ceP(q)

Using the consistency constraint Eq. [43] we find for the
message updates

I1 m,, (xs)

a€P[C(c)]\c,beC(c)

mgﬁ;)(zq) = mgllq(xq)

: (49)
q(xq) H mf;l)q(xq)
a€P(q)
S I petee)ilotxe,) = sl I1 m, ()

xc\Zq ¢'€Qc\q aeP[C(c)]\e,beC(c) (50)

[T m9,@)

a€P(q)\c

ST T dlotxo) =sdpelag) [ mlp(zg). (51)

xc\Zq ¢'€Qc\q

The definition of the second type of messages (qubit
to check) in the last line recovers the initial BP equa-

c'€P(q')\c

::mszgc (wq)

(

tions when identifying Q. = T'(¢) and P(q) =
I'(¢). Note that, instead of following rule Eq. [45| or
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Shown
is the X-Tanner graph of the [[7, 1, 3]]-Steane code. An er-
ror on the first qubit violates parity check 1. Messages are
indicated as arrows. From left to right: qubit to check mes-
sages based on incoming messages, check to qubit messages,
marginal probabilities or belief and hard decision.

Figure 4. Belief Propagation decoding procedure.

standard BP thresholds the beliefs of the small regions
Eq. 48]

Intuitively, the BP algorithm operates on the Tanner
graph of the code by sending messages along its edges.
Starting on the qubit site, it assigns initial probabilities
of error (e.g. depending on the error channel) to the
qubit nodes. This information is sent to the parity check
nodes along the edges. The parity check nodes collect all
incoming messages and send back a message to all adja-
cent qubits. In its components, this message contains the
sum over all configurations compatible with the observed
syndrome, excluding the target qubit. Subsequently, the
marginal probability of the qubits is calculated accord-
ing to the incoming messages. If not compatible or con-
verged, these are sent back excluding the receiver’s infor-
mation. This procedure is shown graphically in Fig. [4]

8. Numerical results

Using this choice of regions, we obtain the decoding
performance for hypergraph product codes based on ran-
dom matrices and for topological surface codes shown
in Fig. 5| The random codes are (7,4)-qLDPC and the
surface codes are (4,4)-qLDPC. We see that the random
codes show a good performance in the sense that increas-
ing the distance of the code increasingly suppresses fail-
ures. The surface codes however show the opposite be-
havior. In both cases, the primary cause for a decoding
failure is not a logical error, but a failure to return an
error compatible with the syndrome or a failure of con-
vergence.

4. Success and Obstacles using BP

The disadvantages and problems involved in classical
BP decoding are extensively covered in the literature.
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Figure 5. GBP with the Bethe approximation (standard BP),
for HGP codes based on random classical codes (top) and
topological surface codes (bottom). While the random codes
show the emergence of a (pseudo-) threshold, the surface
codes show decreasing decoding performance for increasing
distance.

Figure 6. Split belief on a patch of the surface code, de-
coded with BP. Tanner graph representation with qubits as
purple circles, parity-checks as green squares. X-Paulis are
represented by blue and Z-Paulis by red edges. The initial
error is indicated by filled qubits, the violated checks by filled
squares. The error guess of the decoder by the heptagons.
The Z-error on qubits Z12Z31 violates parity checks {6,9}.
The (degenerate) error pattern ZzZsp is symmetric to the
original one. The standard BP decoder returns the union of
all those qubits Z7Z30Z12231 with empty syndrome leading
to a decoding failure.



These mainly concern harmful patterns in the Tanner
graphs of the code due to cycles or trapping sets [29].
Their existence in classical codes translates to quantum
codes when using constructions based on the classical
codes, like the hypergraph product construction. This
also means that classical methods like message scheduling
can be used to alleviate such problems [30]. The nature
of quantum codes themselves introduces new obstacles to
BP decoding. Certain syndromes allow for different error
configurations, that can be translated to each other by
symmetry transformations in the corresponding Tanner
graph.

In a qubit-wise decoding fashion, the BP decoder as-
signs the same probability to each qubit involved in such
configurations. With this split belief, the decoder thresh-
olds all those qubits to the same error guess and therefore
fails to converge. Some scheduling methods can break
these symmetries but there is no general method to avoid
them. Using irregular base codes and graphs of odd de-
gree distribution also reduces the amount of symmetry,
helping the decoder. An exemplary split belief is shown
and explained in Fig. [f]

Because surface codes are highly symmetrical, lots of
such split beliefs occur during decoding, which explains
their bad performance. HGP codes with random base
codes however show a good decoding performance be-
cause their local topology is inherited from the random
classical codes that do not exhibit split beliefs.

There are two main strategies for improving the perfor-
mance of BP. The first makes changes to the algorithm it-
self, Memory Belief Propagation for example shows good
decoding performance at the cost of a slightly higher com-
plexity [3I]. A version of GBP was used to improve the
decoding performance in quantum bicycle codes [32].

Other methods use the soft output of the BP algorithm
(i.e. the marginal probabilities) and use them as input
for post-processing methods. Notably Ordered Statis-
tics Decoding allows to apply the combined BP+OSD
decoder across a wide range of qLDPC codes, again at
the cost of a higher complexity [8] [9].

III. GBP FOR THE SURFACE CODE

We use the same region graph as used for the Bethe
approximation in Sec.[[TD 2] i.e. with large and small re-
gions. We implement the hard decision based on Eq.
We show how this helps with the prototypical split belief
from Fig. [6] in Fig. [§

Using this hard decision procedure, we might still get
a split belief within a single large region. However in our
simulations, we observe that this is not the case, i.e. the
argmax of the region is unique towards the end of the
iterations.

10
A. Split and Repeat

We observe that while decoding based on the region
beliefs using Eq. improves upon standard BP, there
still exist error guesses imcompatible with the overall
syndrome. However, applying the proposed correction
usually reduces the syndrome weight. We use this in-
sight to formulate a split and repeat procedure: After a
run of GBP, save the current error guess and reinitial-
ize the decoding procedure with the syndrome of lower
weight and a rescaled error probability. Repeat this until
there is an empty overall syndrome. The overall error
guess then is the sum of all intermediate errors. This
algorithm is shown in Alg. [[] An exemplary run for a
particularly harmful error pattern on a distance 9 surface
code is shown in Fig. [7] We also see that the free energy
is reduced during the course of decoding correspondingly.

Algorithm 1: GBP split repeat decoding for
surface codes.

Input: Parity-Check matrix H, syndrome s,
a-priori probability pinit, maximum number of
iterations and repetitions nmi, "mr

Output: Error guess é

RG = region graph constructed from H with Bethe

approximation
1=0
étotal =0
S; = S8

while ¢ < n,,, do
ﬁinit = ‘pinit - Wt(étotal)/nqubits‘
é; = GBP(s;, RG, Pinit, "mi)
étotal = étotal + él
if 0(étotal) =: sgBP = s then

| return é = éiptal

else
Si+1 = Si + SGBP
i=1+1
end
end

return Fail

B. Dependence on Initial Probabilities

An additional parameter of the decoding procedure is
the initial probability. As mentioned by Hagiwara et al.,
a linear decoder with a fixed initialization can correct
a certain error set, independent of the error probability
[33]. Kuo and Lai remark that choosing a fixed initial-
ization can prevent fluctuations and increase decoding
stability [3I]. In our simulations, we observe that a fixed
initialization error probability can lead to decoding fail-
ure. We therefore consider two further adaptions.

On the one hand, when re-initializing after a split pro-
cedure, we rescale the channel error probability by the
weight of the current error guess, see Alg.
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(top) and thermodynamic quantities (bottom) during decod-
ing of an error on a distance 9 surface code. Vertical lines
represent the re-initialization after convergence or maximum
number of iterations reached. We see that we can escape the
oscillatory behavior by re-initializing.

Table I. Thresholds from error sampling on the X Z-channel
and the depolarizing channel for binary and quaternary imple-
mentation. The thresholds fall short of the optimal thresholds
obtained by statistical mechanic methods but are similar to
the ones from BP-OSD decoding. The optimal threshold for
the X Z-channel is obtained from the single-Pauli threshold
pix ~10.9% as piZ = 2p% — (p3)%

Channel q Dth BP-OSD([9]) optimal
Xz 2 17% 17.6 % 20.6% [34]
4 17%
2 13.3%
depol. 18.9%
P 4 1% 1l

On the other hand, when decoding still fails, we reini-
tialize the whole decoder with different initial probabili-
ties. Assuming a good decoding performance when pini¢
is close to the channel error probability, we sample the
new initial probability from a Gaussian with width 0.1
around the channel error probability.

C. Numerical Results

Remarkably, in our simulations the decoder never fails
but always returns an error guess that puts the corrupted
word back to the codespace. The results are shown for
independent X Z- noise and depolarizing noise in Fig. [9]
and for the binary and quaternary implementation
respectively. They generally show a decreasing logical
error probability with increasing distance and a crossing
indicating a threshold. The results for the threshold are
summarized in Tab. [
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Figure 8. Split belief on a patch of the surface code, de-
coded with GBP. Tanner graph representation with qubits as
purple circles, parity-checks as green squares. X-Paulis are
represented by blue and Z-Paulis by red edges. The initial
error is indicated by filled qubits, the violated checks by filled
squares. The error guess of the decoder by the heptagons.
The Z-error on qubits Z12Z31 violates parity checks {6,9}.
The (degenerate) error pattern ZzZsp is symmetric to the
original one in the sense that they have equal weight. After
i = 4 iterations, the GBP decoder returns the correct error,
successfully decoding the split belief.

Complerity In a naive implementation, directly
adapting Eqs. 1] and [43] the GBP algorithm requires

e ¢% multiplications per check region ¢ —< n.q%,

e ¢% multiplications per qubit region ¢ —< nqqu,

e ¢%~! summations per marginalization of check re-

gion ¢ =< n.(gd1),

e ¢ multiplications and divisions per message calcu-
lation —< 2d,n4q,

amounting to an overall asymptotic complexity of
O(NyepetitionsNiterations¢°ne). By parallely implement-
ing the calculation of beliefs and messages, the ex-
plicit dependence on the code size can be omitted,
O (NrepetitionsMiterations)- The amount of repetitions and
iterations needed still depends on the code size and
heuristically scale as shown in Tab.[[l} They amount to an
overall scaling of O(n?) (GF(2)) and O(evV™n2) (GF(4)).

IV. SUMMARY AND OUTLOOK

We developed a decoder based on Generalized Belief
Propagation using a specific hard decision method and an
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Figure 9. GBP for the surface code for independent X Z-noise
(top) and depolarizing noise (bottom) in binary implementa-
tion. The logical error rate decreases with increasing distance.
We estimate thresholds of pXY ~ 17% and p?}?POI' ~ 13.3%.

Table II. Scaling of iterations and repetitions of the decoder
with code distance , heuristically obtained from simulations.

GF(2) GF(4)
Iterations O(d?) = O(n.) O(d?) = O(ne)
Split rep. O(d?) = O(ne) O(d?) = O(n.)
PDinit T€P. od®) =001 O(exp(d))

outer re-initialization loop. With these adaptations, the
decoder is able to decode the surface code. The logical
error probability decreases with growing distance below a
certain qubit error probability indicating the emergence
of a threshold of about 14% for depolarizing noise and
17% for independent bit- and phase-flip noise. As is typ-
ical for practical decoders, these values fall short of theo-
retical upper bounds but offer a lower decoding complex-
ity. When comparing to known decodeing algorithms,
our decoder shows similar threshold values compared to
BP-OSD. The main ingredient to the OSD-post process-
ing is matrix inversion, which scales with the third power
in the number of rows, i.e. O(n?) [9]. Minimum weight
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Figure 10. GBP for the surface code for independent X Z-
noise (top) and depolarizing noise (bottom) in quaternary
implementation. The logical error rate decreases with in-
creasing distance. We estimate thresholds of pi> ~ 17% and

paPol x5 14%.

perfect matching achieves a higher threshold but scales
in general as O(n?) [36]. The almost linear time Union
find decoder also achieves a slightly higher threshold [37].

Future work can include a lower complexity implemen-
tation that is based on log-likelihood-ratios, which is fre-
quently used in standard BP algorithms to reduce com-
plexity. This would allow the decoder to be tested for
more general quantum LDPC codes, where finding a fast
and general decoder is ongoing research.

Additionally, all simulations were performed with code
capacity noise, i.e. the data qubits experience noise
through the quantum channel and the syndrome read-
out is assumed perfect. A next step on the road towards
fault tolerance is to extend the decoding scheme to more
realistic noise models, for example including faulty syn-
drome measurements. There are recent results suggest-
ing that belief propagation is also suitable for syndrome
noise when using repeated measurements and even in a
single-shot decoding scheme [38], [39].
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d > 5. (Left) Binary implementation in the depolarizing chan-
nel. (Right) Quaternary implementation in the depolarizing
channel. The quaternary implementation needs on average
more iterations.
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Figure 12. Average number of split repetitions scales
quadratic with the code distance, shown is a quadratic fit for
distances d > 5. (Left) Binary implementation in the depo-
larizing channel. (Right) Quaternary implementation in the
depolarizing channel. The quaternary implementation needs
on average more repetitions.
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SIMULATION METHODS

The decoder is implemented in a GF(g) formalism with
both ¢ = 2 and ¢ = 4 in C++ making use of libraries
libDai [40], the lemon Graph library [41], xtensor [42],
NTL [43] and nlohmann JSON headers [44]. The code
can be found on github [45].
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Appendix A: Representation of Stablizer Codes

a. DBinary representation q = 2 The binary rep-
resentation maps Pauli words of length n to binary vec-
tors of length 2n. We can represent any Pauli word (up
to a phase) by E = X°®Z° where e,,e, € GF(2)".
The binary representation then are the concatenations
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H=(Hx,Hz) and e = (e,,e,) and it holds

X if e =1 and e;4, =0,
Ei =Y if e;, = 1 and €itn = 1, (Al)
Z if e =0 and ey, = 1.

The addition in GF(2) corresponds to addition modulo
2, 1+ 1 = 0. The symplectic product of to vectors e =
(ez,e.),€ = (e, e.) is defined via

/ / / /
exe :=ePe' =e,-€,+e,- €,

(A2)

with P := (0 1”) and - the scalar product,

1, 0
(A3)
such that
H xe = HPe. (A4)
b. Quaternary representation ¢ =4 . In GF(4), ad-

dition and multiplication can be defined via its addition
and multiplication tables

(A5)

The group operation is naturally represented by addition
if the Paulis are mapped via

I—0, X—1, Y—=w Z7Z—w. (A6)

In order to define the symplectic product, two more def-
initions are needed, the conjugation and trace in GF(4),

e Conjugation: GF(4) - GF4): o »a =a X «,
e Trace: GF(4) - GF(4) : o = Tr{a} = a+@.
Then
exe :=Tr{e-e'} Tr{Zeq x«eﬁl} (A7)

q

such that

n—k—1
s:H*e:<Tr{Zch><eq}> .
q c=0

Appendix B: Hypergraph product construction

(A8)

The Tanner graph of the hypergraph product (quan-
tum) code Tg is based on the Cartesian product of
the classical Tanner graphs 7¢, and 7¢,. The Carte-
sian product of two graphs 71 = (N7 = V4 U Cy, Ey)
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and T3 = (No2 = Vo U (s, Es) is the bipartite graph
Tixz =1 T1 X T2 = (Nix2, E1x2) with

Nixo = {n1n2|n € Ni,ng € NQ}
Eixz = {(ninz,niny)|(n1 = ny A (n2,n3) € Ea)

V (ng =nh A (n1,n}) € Ey)}.
(B2)

(B1)

In words: the vertex set of the resulting graph is the
Cartesian product of the vertex sets of the graph factors.
There is an edge between vertices in the resulting graph
if any of their partial vertices shared an edge in their
graph factor. The graph constructed from the Cartesian
product of two bipartite graphs is again bipartite. In
order to derive a code, the vertex set of the new graph is
partitioned into Njxo = Q U (Cx U Cz) with

e qubits: @ := {ninz|(n1 € V1 Ang € Vo) V
CiAng € 02)}

(n1 S

e X-type stabilizers: Cz := {ninz|(n1 € C1 Angy €
Va)}

e Z-type stabilizers: Cx := {nina|(n; € Vi Ang €
C2)}

Chosen like that, the graph corresponds to a Tanner
graph of a quantum CSS code. The commutation con-
dition is fulfilled since whenever n; € V; is adjacent to
n; € C; in Tg¢,, there are exactly two vertices (qubits)
in @ which are adjacent to the constructed X-type sta-
bilizer nin; and Z-type stabilizer n;n’;: nin’ and n;n;.
Twofold anti-commutation then gives commutation.

Appendix C: Belief propagation equations

We denote by I'(e) the neighbors of node e and by o(e)
the parity of configuration e. For a detailed description
of the steps, see text.

e Qubit to check messages

((;i—(l}) X pO H mc —>q (Cl)
c’el(q)\c
e Check to qubit messages
m(_)m x Z Olo(E)e = s.] H mq L (Ey) (C2)
Erceng q'€T(c)\q
e Belief
bgi)( ) x po(E H m®, (C3)
fGF(Q)
e hard decision / error guess
Eéi) = arg max b((f)(Eq) (C4)

Eq
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