000915895 001__ 915895
000915895 005__ 20230814101430.0
000915895 0247_ $$2doi$$a10.1007/s12311-022-01495-0
000915895 0247_ $$2ISSN$$a1473-4222
000915895 0247_ $$2ISSN$$a1473-4230
000915895 0247_ $$2Handle$$a2128/34580
000915895 0247_ $$2pmid$$a36417091
000915895 0247_ $$2WOS$$aWOS:000886806400001
000915895 037__ $$aFZJ-2022-05764
000915895 082__ $$a610
000915895 1001_ $$0P:(DE-Juel1)188899$$aMagielse, Neville$$b0$$ufzj
000915895 245__ $$aA Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition
000915895 260__ $$aLondon$$bDunitz$$c2022
000915895 3367_ $$2DataCite$$aOutput Types/Book Review
000915895 3367_ $$0PUB:(DE-HGF)36$$2PUB:(DE-HGF)$$aReview$$breview$$mreview$$s1687754757_31549
000915895 3367_ $$2ORCID$$aBOOK_REVIEW
000915895 3367_ $$2DRIVER$$areview
000915895 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000915895 3367_ $$2BibTeX$$aARTICLE
000915895 3367_ $$00$$2EndNote$$aJournal Article
000915895 520__ $$aThe longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates. Rather, several lines of evidence indicate that the exceptional volumetric increase of the lateral cerebellum in conjunction with its connectivity with the cerebral cortical system may be linked to non-motor functions and mental operation in primates. This idea is supported by diverging cerebello-cerebral adaptations that potentially coevolve with cognitive abilities across other vertebrates such as dolphins, parrots, and elephants. Modular adaptations upon the vertebrate cerebello-cerebral system may thus help better understand the neuroevolutionary trajectory of the primate brain and its relation to cognition in humans. Lateral cerebellar lobules crura I-II and their reciprocal connections to the cerebral cortical association areas appear to have substantially expanded in great apes, and humans. This, along with the notable increase in the ventral portions of the dentate nucleus and a shift to increased relative prefrontal-cerebellar connectivity, suggests that modular cerebellar adaptations support cognitive functions in humans. In sum, we show how comparative neuroscience provides new avenues to broaden our understanding of cerebellar and cerebello-cerebral functions in the context of cognition.
000915895 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000915895 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000915895 7001_ $$0P:(DE-HGF)0$$aHeuer, Katja$$b1
000915895 7001_ $$0P:(DE-HGF)0$$aToro, Roberto$$b2
000915895 7001_ $$0P:(DE-HGF)0$$aSchutter, Dennis J. L. G.$$b3
000915895 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b4
000915895 773__ $$0PERI:(DE-600)2071266-2$$a10.1007/s12311-022-01495-0$$tThe Cerebellum$$x1473-4222$$y2022
000915895 8564_ $$uhttps://juser.fz-juelich.de/record/915895/files/s12311-022-01495-0.pdf$$yOpenAccess
000915895 8767_ $$d2022-01-26$$eHybrid-OA$$jDEAL
000915895 909CO $$ooai:juser.fz-juelich.de:915895$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000915895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188899$$aForschungszentrum Jülich$$b0$$kFZJ
000915895 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b4$$kFZJ
000915895 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000915895 9141_ $$y2022
000915895 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000915895 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000915895 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000915895 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000915895 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREBELLUM : 2021$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-17$$wger
000915895 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000915895 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000915895 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000915895 920__ $$lyes
000915895 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000915895 980__ $$areview
000915895 980__ $$aVDB
000915895 980__ $$aUNRESTRICTED
000915895 980__ $$ajournal
000915895 980__ $$aI:(DE-Juel1)INM-7-20090406
000915895 980__ $$aAPC
000915895 9801_ $$aAPC
000915895 9801_ $$aFullTexts