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a b s t r a c t 

A fundamental goal across the neurosciences is the characterization of relationships linking brain anatomy, func- 

tioning, and behavior. Although various MRI modalities have been developed to probe these relationships, direct 

comparisons of their ability to predict behavior have been lacking. Here, we compared the ability of anatomical 

T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level. Cortical thickness, area and 

volume were extracted from anatomical T1 images. Diffusion Tensor Imaging (DTI) and approximate Neurite 

Orientation Dispersion and Density Imaging (NODDI) models were fitted to the diffusion images. The resulting 

metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also ran probabilistic tractogra- 

phy for the diffusion images, from which we extracted the stream count, average stream length, and the average 

of each DTI and NODDI metric across tracts connecting each pair of brain regions. Functional connectivity (FC) 

was extracted from both task and resting-state fMRI. Individualized prediction of a wide range of behavioral mea- 

sures were performed using kernel ridge regression, linear ridge regression and elastic net regression. Consistency 

of the results were investigated with the Human Connectome Project (HCP) and Adolescent Brain Cognitive De- 

velopment (ABCD) datasets. In both datasets, FC-based models gave the best prediction performance, regardless 

of regression model or behavioral measure. This was especially true for the cognitive component. Furthermore, 

all modalities were able to predict cognition better than other behavioral components. Combining all modalities 

improved prediction of cognition, but not other behavioral components. Finally, across all behaviors, combining 

resting and task FC yielded prediction performance similar to combining all modalities. Overall, our study sug- 

gests that in the case of healthy children and young adults, behaviorally-relevant information in T1 and diffusion 

features might reflect a subset of the variance captured by FC. 
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. Introduction 

A fundamental aim of neuroscience is to answer how brain charac-

eristics are linked to behavior ( Zatorre et al., 2012 ; Rosenberg et al.,

018 ). Previous studies have established that inter-individual variation

n functional and structural patterns covary with behavioral and demo-
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lnæs et al., 2020 ). In recent years, there is an increasing interest in uti-

izing machine learning algorithms to predict behavioral traits at an in-

ividual level ( Bzdok & Meyer-Lindenberg, 2018 ; Calhoun, 2018 ). Here,

e compare the ability of anatomical, diffusion and functional charac-

eristics of the brain in making individualized predictions of behavioral
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Diffusion and anatomical MRI have been used to make individualized

redictions in a large variety of neurological and psychiatric disorders

 Sabuncu & Konukoglu, 2015 ; Arbabshirani et al., 2017 ; Bajaj et al.,

017 ; Cohen et al., 2021 ; Elad et al., 2021 ). However, their utility for

ehavioral predictions in healthy participants has been less explored.

iven that psychiatric symptoms and associated shifts in brain func-

ion likely exist on a spectrum from healthy participants to patient

opulations ( Xia et al., 2018 ; Kebets et al., 2019 ; Peter et al., 2021 ),

redicting behavioral traits in the former group is an important en-

eavour ( Lui et al., 2016 ). Functional connectivity has already been

idely used to predict individual behavioral traits in healthy partici-

ants ( Kong et al., 2019 ; Li et al., 2019 ; Cai et al., 2020 ; He et al., 2020 ;

ripada et al., 2020 ; Chen et al., 2022 ). However, similar work utilizing

natomical ( Lu et al., 2014 ; Avinun et al., 2020 ; Liu et al., 2021 ) and

iffusion MRI ( Lewis et al., 2016 ; Mansour et al., 2021 ) has been a lot

ore sparse. Furthermore, most of these studies have performed predic-

ions using a single modality, so the comparative value of each modality

n making individualized predictions is unclear. 

Several recent studies have tackled the topic of comparing

RI modalities for behavioral prediction ( Dhamala et al., 2021 ;

ansour et al., 2021 ; Rasero et al., 2021 ). However, their analyses were

erformed in the Human Connectome Project (HCP), which is perhaps

he most widely used dataset for studies investigating individualized

redictions in healthy participants ( Finn et al., 2015 ; Greene et al.,

018 ; Gao et al., 2019 ). Repeated use of the HCP for investigating be-

avior prediction leads to the issue of dataset decay ( Thompson et al.,

020 ). The over-reliance on the dataset results in increased possibility

f type I errors as the number of sequential tests on the dataset increases

 Thompson et al., 2020 ). Furthermore, repeated use of the training and

est sets from the same dataset leads to overly optimistic prediction re-

ults with models less able to generalize to new datasets ( Recht et al.,

019 ; Beyer et al., 2020 ). These considerations highlight the need for

dditional analyses of independent data and/or less utilized datasets to

eplicate the conclusions. Therefore, in the current study, in addition to

he widely used HCP dataset, we utilized the adolescent brain cognitive

evelopment (ABCD) dataset. 

Given that different MRI modalities measure different aspects of the

rain biology, one question is whether combining multiple MRI modal-

ties might improve behavioral prediction. Rasero and colleagues found

hat integrating diffusion MRI and resting FC led to improvement in pre-

icting cognition ( Rasero et al., 2021 ). However, two other studies did

ot find any benefit from integrating diffusion MRI, resting-state fMRI

nd/or anatomical features to predict cognition ( Dhamala et al., 2021 ;

iao et al., 2021 ). Overall, the literature is inconsistent about the value

f integrating multiple modalities. Furthermore, despite the wide range

f possible diffusion features, most studies only focused on one particu-

ar type of diffusion feature. Most studies have also focused on predicting

 small number of behavioral measures (e.g. cognition), which reduces

heir generalizability to other behavior. 

In this study, we compared the utility of different MRI modalities

or behavioral prediction across a wide range of behavioral measures

n two large datasets (HCP and ABCD) using three different regression

odels. Unlike previous studies, we considered a wide range of dif-

usion features, including fractional anisotropy (FA), mean diffusivity

MD), axial diffusivity (AD) and radial diffusivity (RD). An approximate

eurite Orientation Dispersion and Density Imaging (AMICO-NODDI)

odel was also used to derive orientation dispersion (OD), intracellu-

ar volume fraction (ICVF), and isotropic volume fraction (ISOVF) fea-

ures. Probabilistic tractography was performed to extract structural

onnectivity (SC) features. Furthermore, unlike most previous studies

n multimodal prediction, we considered both resting and task FC. In

he case of anatomical T1, we considered cortical thickness, volume

nd surface area. We also combined features within and across modali-

ies to investigate whether integrating modalities resulted in improved

rediction. 
2 
. Methods and materials 

.1. Datasets and participants 

We considered participants from the HCP WU-Minn S1200 release.

fter strict pre-processing quality control of imaging data, we filtered

articipants from Li’s set of 953 participants ( Li et al., 2019 ) based on

he availability of a complete set of structural, diffusion and functional

resting and task) scans, as well as all behavioral scores of interest (Ta-

le S3). Our main analysis comprised 753 participants, who fulfilled all

election criteria. 

We also considered participants from the ABCD 2.0.1 release. After

trict pre-processing quality control of imaging data, participants from

hen’s set of 2262 subjects who underwent motion-filtering to remove

seudo-respiratory motion ( Chen et al., 2022 ) were filtered based on the

vailability of a complete set of structural, diffusion and functional (rest-

ng and task) scans, and all behavioral scores of interest (Table S4). We

lso excluded participants from sites which used Phillips scanners due

o incorrect processing, as recommended by the ABCD consortium. Our

ain analysis comprised 1823 participants, who fulfilled all selection

riteria. 

.2. Imaging acquisition and processing 

Minimally processed T1 and multi-shell diffusion from each dataset

ere utilized. Details about the acquisition protocol and minimal pro-

essing for the HCP data can be found elsewhere ( Glasser et al., 2013 ;

an Essen et al., 2013 ). Likewise, acquisition protocol and minimal pro-

essing pipelines for the ABCD can be found elsewhere ( Casey et al.,

018 ; Hagler et al., 2019 ). 

FMRI data in the HCP included working memory, gambling, motor,

anguage and social cognition tasks, as well as the resting-state scans. We

xcluded the relational processing and emotional processing tasks in the

CP as the run duration for these tasks were below 3 minutes. The MS-

All ICA-FIX data was used for the resting state scans, and the MSMAll

ata was used for task fMRI ( Glasser et al., 2013 ). Global signal regres-

ion has been shown to improve behavioral prediction ( Li et al., 2019 ),

o we further applied censoring and global signal regression (GSR) and

ensoring, consistent with our previous studies ( Li et al., 2019 ; He et al.,

020 ; Kong et al., 2021 ). The censoring process entailed flagging frames

ith either FD > 0.2mm or DVARS > 75. The frame immediately before

nd two frames immediately after flagged frames were marked as cen-

ored. Additionally, uncensored segments of data consisting of less than

 frames were also censored during downstream processing. 

For the ABCD study, fMRI data included the N-back, monetary incen-

ive delay (MID), stop signal task (SST), as well as resting-state scans.

he minimally processed functional data were utilized ( Hagler et al.,

019 ). Processing of functional data was performed in line with our

revious study ( Chen et al., 2022 ). We additionally processed the mini-

ally processed data with the following steps. (1) The functional images

ere aligned to the T1 images using boundary-based registration ( Greve

 Fischl, 2009 ). (2) Respiratory pseudomotion motion filtering was per-

ormed by applying a bandstop filter of 0.31-0.43Hz ( Fair et al., 2020 ).

3) Frames with FD > 0.3mm or DVARS > 50 were flagged. The flagged

rame, as well as the frame immediately before and two frames immedi-

tely after the marked frame were censored. Additionally, uncensored

egments of data consisting of less than 5 frames were also censored. (4)

lobal, white matter and ventricular signals, 6 motion parameters, and

heir temporal derivatives were regressed from the functional data. Re-

ression coefficients were estimated from uncensored data. (5) Censored

rames were interpolated with the Lomb-Scargle periodogram ( Power

t al., 2014 ). (6) The data underwent bandpass filtering (0.009Hz –

.08Hz). (7) Lastly, the data was then projected onto FreeSurfer fsaver-

ge6 surface space and smoothed using a 6 mm full-width half maximum

ernel. 
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Fig. 1. The 400-region Schaefer group-level parcellation using the network ordering from Kong and colleagues ( Kong et al., 2021 ). 
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.3. Imaging features for behavioral prediction 

.3.1. Anatomical feature processing 

The 400-region Schaefer parcellation ( Figure 1 ) was projected to

ach participant’s native surface space ( Schaefer et al., 2018 ). Using

ach participant’s T1 image, cortical volume, cortical thickness and cor-

ical area were extracted from each of the 400 regions of interest (ROIs)

sing Freesurfer 5.3.0 ( Dale et al., 1999 ). Cortical area in this context

efers to the surface area of each ROI, after the Schaefer parcellation has

een projected to each individual’s native space ( Feczko et al., 2009 ).

ortical volumes were divided by intra-cranial volume (ICV), while cor-

ical area was divided by ICV 

2/3 . This resulted in three 400 x number of

articipants feature matrices for each dataset. 

.3.2. Diffusion feature processing 

A diffusion tensor model (DTI) was fitted to each participant’s dif-

usion images using FSL’s DTIFIT ( Basser et al., 1994 ). The fractional

nisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and ra-

ial diffusivity (RD) images were generated for each participant. Ad-

itionally, a relaxed Neurite Orientation Dispersion and Density Imag-

ng (AMICO-NODDI) model was also fitted to the diffusion images

 Daducci et al., 2015 ). Orientation dispersion (OD), intracellular vol-

me fraction (ICVF), and isotropic volume fraction (ISOVF) images were

enerated for each participant. 

The diffusion features were further processed in two ways. First, a

BSS skeleton was generated for each set of participants (one for HCP

nd one for ABCD), and the seven diffusion metric images (FA, MD,

D, RD, OD, ICVF, ISOVF) were projected to the skeleton ( Smith et al.,

006 ). The voxels of each diffusion metric skeleton were vectorized for

ach participant, yielding seven feature matrices for each dataset. Each

atrix is of size number of TBSS voxels x number of participants. 

Secondly, probabilistic tractography was run for each participant us-

ng MRtrix ( Tournier et al., 2019 ). The 400-region Schaefer parcellation

as projected to each participant’s native surface space ( Schaefer et al.,

018 ). Nine 400 × 400 structural connectivity (SC) matrices were gener-

ted. The first matrix was a symmetric matrix containing the log trans-

ormation of stream count connecting each ROI pair. The second ma-

rix comprised the average length of streams. The final seven matrices

orresponded to the seven diffusion metrics averaged along and across

treams connecting each ROI pair. The lower triangle of each matrix

as vectorized for each participant, yielding nine 79,800 x number of

articipants feature matrices for each dataset. 

.3.3. Functional feature processing 

A functional connectivity (FC) matrix was generated for each task

MRI and resting-state fMRI scan using the 400-region Schaefer parcel-
3 
ation. The FC matrix was constructed by computing the Pearson’s cor-

elation between the fMRI signals of each ROI pair. The lower triangle

f each matrix was vectorized for each participant, yielding six feature

atrices for the HCP and four feature matrices for the ABCD study. 

.4. Behavioral data 

We analyzed 58 behavioral scores from the HCP, consistent with our

revious studies ( Kong et al., 2019 ; Li et al., 2019 ). In the case of ABCD,

e considered 36 behavioral scores, consistent with our previous study

 Chen et al., 2022 ). A complete list of scores used for the HCP and ABCD

an be found in Tables S3 and S4 respectively. 

Because many behavioral scores were correlated, we performed a

actor analysis within each dataset to derive components explaining dif-

ering aspects of behavior. To ensure that there was no data leakage,

he behavioral components were estimated from participants not used in

he main analysis. We additionally ensured that these participants were

ot related to any participants used in the main analysis. In the ABCD

ataset, we only considered participants with all 36 behavioral scores.

his resulted in the component scores being estimated over 8595 partic-

pants in the ABCD dataset. In the HCP dataset, we again estimated the

ehavioral components from subjects not used and also not related to

articipants in the main analysis, with 5 or less missing scores in order to

aximize the sample size. Subjects with missing scores had their scores

mputed through an expectation maximization algorithm implemented

he “statsmodels ” library in python ( Seabold & Perktold, 2010 ). This

esulted in the component scores being estimated over 80 participants

n the HCP dataset. The scores from the participants in each dataset

nderwent a principal component analysis. The top three components

xplaining the most variance were retained and entered into a varimax

otation ( Kaiser, 1958 ). In the HCP, based on the behavioral loadings

Table S5), we interpreted the three components to be related to (1)

ognition, (2) life dissatisfaction and (3) emotional recognition. In the

BCD, based on the behavioral loadings (Table S6), we interpreted the

hree components to the 3 components to be related to (1) cognition,

2) personality and (3) mental health. 

We also considered prediction results from individual behavioral

cores (58 measures in HCP and 36 measures in ABCD). When compar-

ng the prediction results, we averaged the prediction accuracies across

8 HCP behavioral measures (or 36 ABCD behavioral measures), yield-

ng a “Grand Average ” for each dataset. 

.5. Single-feature-type prediction models 

We utilized different regression models to predict the 3 behavioral

omponents and each behavioral measure in each dataset. Our main
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nalysis utilized kernel ridge regression (KRR), which has shown strong

ehavioral prediction performance ( Kong et al., 2019 ; He et al., 2020 ;

hen et al., 2022 ). Briefly, KRR performs predictions based on the sim-

larity between imaging features. A l 2 -regularization term was used in

he model to reduce overfitting. 

A separate predictive model was built for each feature type within

ach MRI modality. In the case of anatomical features, three KRR models

ere evaluated for each behavioral measure, corresponding to cortical

olume, thickness and area. In the case of TBSS, seven KRR models were

valuated for each behavioral measure, corresponding to FA, MD, AD,

D, OD, ISOVF and ICVF. In the case of structural connectivity, nine KRR

odels were evaluated for each behavioral measure, corresponding to

he log transformation of stream counts, stream length, FA, MD, AD,

D, OD, ISOVF and ICVF. In the case of FC in HCP, six KRR models

ere evaluated for each behavioral measure, corresponding to resting

C and five different tasks. In the case of FC in ABCD, four KRR models

ere evaluated for each behavioral measure, corresponding to resting

C and three different tasks. 

Each regression model was trained using a nested cross-validation

rocedure. In the HCP, we performed 60 random replications of 10-fold

ested cross-validation. Empirically, 30 to 40 repetitions were sufficient

or the prediction performance to converge. The family structure was

aken into account when performing the cross-validation – participants

rom the same family were placed into either the test fold or training

olds, but not split across training and test folds. 

In the case of ABCD, similar to our previous study ( Chen et al.,

022 ), we combined participants across the 22 imaging sites, yielding

0 “site-clusters ”. Each site-cluster comprised at least 140 individuals

see Table S7). We then performed a leave-3-site-clusters out nested

ross-validation – 7 random site-clusters were used for training while

he remaining 3 site-clusters were used for testing. The prediction was

erformed for every possible split of the site clusters, resulting in 120

eplications. 

Age and sex were regressed from the behavioral measures. Regres-

ion was performed on the training folds and the regression coefficients

ere applied to the test fold. Accuracy of each model was defined as

he correlation between the predicted scores of the test participants and

heir actual scores within each test fold, and then averaged across test

olds and replications. We additionally computed accuracy using the co-

fficient of determination (COD). 

To ensure our conclusions are across different regression approaches,

e also considered linear ridge regression (LRR) and elastic net regres-

ion ( Friedman et al., 2010 ). 

.6. Multiple-feature-type prediction models 

To combine across features, we applied a stacking procedure. For

ach participant, predictions from the single-feature-type KRR models

first-level predictions) were concatenated into a vector and used as pre-

iction features in a 2nd level linear regression with no regularization.

e also considered the use of multi-kernel ridge regression (multi-KRR),

hich we have previously utilized to predict behavioral measures using

ask and resting FC. 

Overall, we trained three models: a multi-KRR model combining all

C features, a stacking model combining all FC-based models, and a

tacking model combining all single-feature-type models from all modal-

ties. We note that we did not consider a multi-KRR model combining

ll features from all modalities because that was too computationally

xpensive. 

In the case of the stacking, to prevent data leakage between the

raining and test folds, cross-validation splits were fixed from the single-

eature-type models. The training data consisted of first-level predictions

ade by the “inner-loops ” of the first level models so that none of the

rst-level predictions would have been made from participants of the

est folds. Similar to the single-modality models, prediction performance

as again evaluated using Pearson’s correlation and COD. 
4 
.7. Statistical tests 

To test whether a model performed better than chance, we performed

 permutation test by shuffling behavioral measures across participants

nd repeating the prediction procedure. Care was taken to avoid shuf-

ing between families or sites. 

To compare models, we used the corrected resampled t-test ( Nadeau

 Benigo, 2003 ; Bouckaert & Frank, 2004 ) because a permutation test

ould not be valid. To control for multiple comparisons, we performed

 false discovery rate (FDR) correction with q < 0.05 for each dataset.

n the HCP dataset, FDR correction was performed for all statistical tests

ssessing whether a model performed better than chance, and tests com-

aring whether a model performed better than another model. Another

DR correction was performed for all aforementioned tests in the ABCD

ataset. 

.8. Model interpretation 

For each component score, we interpreted feature importance for the

est performing single-feature-type prediction model from each modal-

ty. Similar to our previous study ( Chen et al., 2022 ), this was performed

hrough the Haufe transformation ( Haufe et al., 2014 ). In brief, for a

iven prediction model, the covariance was calculated between each fea-

ure and the predicted behavior score for each subject. Positive feature

mportance scores indicate higher brain feature values were associated

ith higher predicted behavior values. 

This process yielded a 400-length vector for T1 structural measures,

ector for TBSS diffusion measures (whose length is equivalent to the

umber of TBSS voxels), and 79,800-length vector for tractography dif-

usion measures and functional measures. For visualization purposes,

eature importance values were projected from the TBSS skeleton to the

SL ICBM-DTI-81 white matter atlas ( Hua et al., 2008 ) and was then

veraged within each tract. For the tractography and FC features, we

earranged the feature importance vector into a 400 × 400 connectivity

atrix. 

As a post-hoc analysis, we calculated the correlation of the feature

mportance vectors between the FC models in each dataset for all com-

onent scores. We additionally calculated the correlation of the feature

mportance vectors between FC models from the HCP and the ABCD

atasets. 

.9. Data and code availability 

The lists of participants, features, and behavior scores utilized are

eleased for both datasets. Data for the HCP are available in this

ithub repository ( https://github.com/ThomasYeoLab/Ooi2022 _ MMP _

CP ). Data for the ABCD are available on the NIMH Data Archive (NDA)

ebsite ( https://dx.doi.org/10.15154/1523482 ). The folder structure

or ABCD is similar to that of the HCP. Any additional data can be

ccessed directly from the HCP ( https://www.humanconnectome.org/ )

nd ABCD ( https://abcdstudy.org/ ) websites, as they are both publicly

vailable. 

Code for this study is publicly available in the Github reposi-

ory maintained by the Computational Brain Imaging Group ( https:

/github.com/ThomasYeoLab/CBIG ). Code specific to the regression

odels and analyses in this study can be found here ( https://github.

om/ThomasYeoLab/Standalone _ Ooi2022 _ MMP ). 

a. To replicate the results in this study, first download the features and

training-test splits provided for each dataset, and train the regression

algorithms with the regression code from the CBIG repository. 

b. To compare a new set of features against the benchmarks in this

study. Download the participant list and training-test split for each

dataset. Using the participant list provided in each dataset reposi-

tory, extract a #features x #participants matrix for each participant

in the list and perform the predictions using the regression codes

from the CBIG repository using the same training-test splits. 

https://github.com/ThomasYeoLab/Ooi2022_MMP_HCP
https://dx.doi.org/10.15154/1523482
https://www.humanconnectome.org/
https://abcdstudy.org/
https://github.com/ThomasYeoLab/CBIG
https://github.com/ThomasYeoLab/Standalone_Ooi2022_MMP
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Fig. 2. Functional connectivity (FC) outper- 

forms other modalities for kernel ridge re- 

gression (KRR). (A) Prediction performance 

(Pearson’s correlation) of KRR averaged across 

single-feature-type predictive models within 

each modality (anatomical, TBSS, structural 

connectivity, functional connectivity) in the 

HCP dataset. Results are shown for the three 

behavioral components and “grand average ”

obtained by averaging prediction performance 

across 58 behavioral measures. Each boxplot 

shows the distribution of performance over 60 

repetitions of the nested cross-validation pro- 

cedure. (B) Prediction performance (Pearson’s 

correlation) of KRR averaged across single- 

feature-type predictive models within each 

modality (anatomical, TBSS, structural connec- 

tivity, functional connectivity) in the ABCD 

dataset. Results are shown for the three be- 

havioral components and “grand average ” ob- 

tained by averaging prediction performance 

across 36 behavioral measures. Each boxplot 

shows the distribution of performance over 120 

repetitions of the nested cross-validation proce- 

dure. Connecting lines between boxes denote 

significantly different model performances af- 

ter correction for multiple comparisons (FDR q 

< 0.05). 

 

 

 

 

 

T

C  

T

C

3

3

b

 

K  

n  

t  

t  

F  
c. To compare a new predictive model against the benchmarks in this

study, download the features and training-test splits for each dataset.

Using the same features and training-test splits, predictive perfor-

mance of the new model can be compared to the results in this

study. 

Processing pipelines for diffusion data ( https://github.com/

homasYeoLab/CBIG/tree/master/stable _ projects/preprocessing/ 

BIG2022 _ DiffProc ), and functional data ( https://github.com/

homasYeoLab/CBIG/tree/master/stable _ projects/preprocessing/ 

BIG _ fMRI _ Preproc2016 ) are provided in their respective links. 
5 
. Results 

.1. Functional connectivity (FC) outperforms other features for predicting 

ehavior 

Across both HCP and ABCD, for each feature-type, a separate

RR model was trained to predict each of three behavioral compo-

ents and each behavioral measure. Figure 2 shows the KRR predic-

ive performance (Pearson’s correlation) averaged across single-feature-

ype predictive models for each of the three behavioral components.

igure 2 also shows the predictive performance averaged across single-

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG2022_DiffProc
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_fMRI_Preproc2016
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Fig. 3. Functional connectivity (FC) outper- 

forms other modalities for linear ridge regres- 

sion (LRR). Figure is the same as Figure 2 ex- 

cept that LRR was utilized instead of kernel 

ridge regression. (A) Prediction performance 

(Pearson’s correlation) of LRR averaged across 

single-feature-type predictive models within 

each modality (anatomical, TBSS, structural 

connectivity, functional connectivity) in the 

HCP dataset. Results are shown for the three 

behavioral components and “grand average ”

obtained by averaging prediction performance 

across 58 behavioral measures. Each boxplot 

shows the distribution of performance over 60 

repetitions of the nested cross-validation pro- 

cedure. (B) Prediction performance (Pearson’s 

correlation) of LRR averaged across single- 

feature-type predictive models within each 

modality (anatomical, TBSS, structural connec- 

tivity, functional connectivity) in the ABCD 

dataset. Results are shown for the three be- 

havioral components and “grand average ” ob- 

tained by averaging prediction performance 

across 36 behavioral measures. Each boxplot 

shows the distribution of performance over 120 

repetitions of the nested cross-validation proce- 

dure. Connecting lines between boxes denote 

significantly different model performances af- 

ter correction for multiple comparisons (FDR q 

< 0.05). 
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eature-type predictive models for all behavioral measures, which we

efer to as “grand average ”. The grand average corresponded to aver-

ging the prediction performance across 58 behavioral measures in the

ase of HCP and 36 behavioral measures in the case of ABCD. 

In both datasets, FC-based models performed the best, especially in

he case of the cognition component (p < 1e-8) and the grand average (p

 5e-16). Predictions of cognition were also significantly better for FC-

ased models compared to models trained on anatomical features, TBSS,

nd SC in both the HCP (p = 1.5e-19, p = 7.8e-17, p = 1.9e-9 respectively)

nd ABCD (p = 2.7e-23, p = 6.0e-12, p = 1.4e-10 respectively) datasets. 
6 
Similar results were obtained with COD (Figure S1). Prediction per-

ormance (Pearson’s correlation) for each individual behavioral measure

an be found in Figures S2 to S6. LRR and elastic net yielded slightly

ower prediction performance, but similar conclusions ( Figures 3 and

 ). 

Figure 5 shows the best single-feature-type (based on KRR) from

ach modality for each behavior component and grand average. In

oth datasets, FC was better than anatomical features, TBSS and SC.

imilar results were obtained with LRR and elastic net (Figures S7

o S8). 
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Fig. 4. Functional connectivity (FC) outper- 

forms other modalities for elastic net. Figure is 

the same as Figure 2 except that elastic net was 

utilized instead of kernel ridge regression. (A) 

Prediction performance (Pearson’s correlation) 

of elastic net averaged across single-feature- 

type predictive models within each modal- 

ity (anatomical, TBSS, structural connectivity, 

functional connectivity) in the HCP dataset. Re- 

sults are shown for the three behavioral com- 

ponents and “grand average ” obtained by av- 

eraging prediction performance across 58 be- 

havioral measures. Each boxplot shows the dis- 

tribution of performance over 60 repetitions 

of the nested cross-validation procedure. (B) 

Prediction performance (Pearson’s correlation) 

of elastic net averaged across single-feature- 

type predictive models within each modal- 

ity (anatomical, TBSS, structural connectivity, 

functional connectivity) in the ABCD dataset. 

Results are shown for the three behavioral com- 

ponents and “grand average ” obtained by av- 

eraging prediction performance across 36 be- 

havioral measures. Each boxplot shows the 

distribution of performance over 120 repeti- 

tions of the nested cross-validation procedure. 

Connecting lines between boxes denote sig- 

nificantly different model performances after 

correction for multiple comparisons (FDR q < 

0.05). 
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.2. All modalities predict cognition better than chance 

Figures 6 and 7 show the KRR prediction performance (Pearson’s cor-

elation) for each single-feature-type predictive model in the HCP and

BCD datasets respectively. Across all feature types and both datasets,

he cognitive component was predicted better than chance. This was not

he case for the other two behavioral components in HCP and ABCD.

imilar results were obtained with COD (Figures S9 and S10), as well as

RR and elastic net (Figures S11 to S14). 

Overall, this suggests that in the case of healthy children and young

dults, brain characteristics captured by MRI most strongly reflect in-
 (

7 
ividual differences in cognition and might reflect the difficulty in cap-

uring subjective aspects of behavior through imaging. 

.3. Combining resting and task FC was as good as combining across all 

odalities 

Figure 8 shows the prediction performance (Pearson’s correlation)

rom combining various MRI features based on stacking or multi-

RR. For comparison, the best single-feature-type from KRR is shown.

e note that the best single-feature-type always corresponded to FC

 Figure 5 ). 
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Fig. 5. Functional connectivity (FC) outper- 

forms other modalities for kernel ridge regres- 

sion (KRR). Figure is the same as Figure 2 ex- 

cept that the best-feature-type for each behav- 

ioral measure was selected instead of averag- 

ing across feature-types. (A) Prediction per- 

formance (Pearson’s correlation) of KRR for 

the best performing feature-type within each 

modality in the HCP dataset. For the cognition 

component, the best features were cortical vol- 

ume, TBSS AD, SC stream length and language 

FC. For the dissatisfaction component, the best 

features were cortical thickness, TBSS OD, SC 

stream count and working memory FC. For the 

emotion component, the best features were cor- 

tical volume, TBSS FA, SC stream length and 

gambling FC. For the grand average, the best 

features were cortical volume, TBSS AD, SC 

stream count and language FC. (B) Prediction 

performance (Pearson’s correlation) of KRR for 

the best performing feature-type within each 

modality in the ABCD dataset. For the cogni- 

tion component, the best features were corti- 

cal thickness, TBSS ICVF, SC FA and N-back 

FC. For the personality component, the best 

features were cortical volume, TBSS AD, SC 

stream length and N-back FC. For the mental 

health component, the best features were corti- 

cal thickness, TBSS ISOVF, SC RD and SST FC. 

For the grand average, the best features were 

cortical thickness, TBSS OD, SC RD and N-back 

FC. We note that no statistical test was per- 

formed here since maximum statistic is prone 

to outliers. 
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In the case of the cognitive component, multi-KRR of all FC features,

tacking of all FC-based models and stacking of all single-feature-type

odels of all modalities yielded better prediction performance than the

est single-feature-type model in both the HCP (p = 1.2e-4, p = 9.9e-6,

 = 1.7e-4 respectively) and ABCD (p = 9.6e-4, p = 3.4e-6, p = 0.0198 re-

pectively). 

Furthermore, stacking all modalities did not provide any significant

mprovement over stacking FC-based models. In addition, stacking the

est single-feature-type models from each modality was not better than

tacking FC-based models (Figure S15). Similar results were obtained

ith COD (Figure S16). Overall, this suggests that the gain from stacking

ll modalities was largely due to the variance account for in FC. 
8 
Finally, combining multiple features did not improve the prediction

f the remaining two behavioral components in both datasets. In fact,

n the case of life dissatisfaction in the HCP dataset, the best performing

ingle-feature model was statistically better than stacking all FC-based

odels or stacking all single-feature-type models of all modalities. 

.4. Interpretation of predictive models 

Feature importance was calculated for each KRR single-feature-type

odel that performed above chance. Feature importance was calculated

or each component score using the Haufe transformation. As cognition

s a common behavioral component across both datasets, and the predic-
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Fig. 6. Prediction performance (Pearson’s correlation) of kernel ridge regression (KRR) for each single-feature-type in the HCP dataset. Results are shown separately 

for (A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity. ∗ denotes that the model performed better than chance after correction for multiple 

comparisons (FDR q < 0.05). Across all feature types, the cognitive component was predicted better than chance. This was not the case for the other two behavioral 

components. We note that no statistical test was performed to compare models; see Figures 2 to 5 for model comparisons. 
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ion of non-cognitive behavior component scores are significant across

ome but not all modalities, we have focused on cognition in this study.

igures 9 and 10 show the feature importance of the best single-feature-

ype model from each modality for models predicting cognition. This

orresponds to the models shown in Figure 5 . For the dissatisfaction
9 
nd emotion behavior components in the HCP dataset, only FC mod-

ls performed above chance and the feature importance from the best

erforming FC models are shown in Figure S17. For the ABCD dataset,

eature importance from the best performing single-feature-type models

redicting the personality behavior component from each modality is
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Fig. 7. Prediction performance (Pearson’s correlation) of kernel ridge regression (KRR) for each single-feature-type in the ABCD dataset. Figure is the same as 

Figure 6 except that the results here corresponded to the ABCD dataset (instead of HCP). Results are shown separately for (A) anatomical features, (B) FC, (C) TBSS 

and (D) structural connectivity. ∗ denotes that the model performed better than chance after correction for multiple comparisons (FDR q < 0.05). Across all feature 

types, the cognitive component was predicted better than chance. This was not the case for the other two behavioral components. We note that no statistical test 

was performed to compare models; see Figures 2 to 5 for model comparisons. 

10 
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Fig. 8. Combining resting and task FC was 

as good as combining across all modalities. 

(A) Prediction performance (Pearson’s correla- 

tion) from combining various MRI features and 

modalities in the HCP dataset. We considered 

multi-KRR of all FC features, stacking of all FC 

models and stacking of all single-feature-type 

models across all modalities. For comparison, 

the best single-feature-type from KRR is shown. 

Each boxplot shows the distribution over 60 

repetitions of the nested cross-validation pro- 

cedure. (B) Prediction performance (Pearson’s 

correlation) from combining various MRI fea- 

tures and modalities in the ABCD dataset. We 

considered multi-KRR of all FC features, stack- 

ing of all FC models and stacking of all single- 

feature-type models across all modalities. For 

comparison, the best single-feature-type from 

KRR is shown. Each boxplot shows the dis- 

tribution over 120 repetitions of the nested 

cross-validation procedure. ∗ denotes that the 

model performed better than chance after cor- 

rection for multiple comparisons (FDR q < 

0.05). Connecting lines between boxes denote 

significantly different model performances af- 

ter correction for multiple comparisons (FDR 

q < 0.05). Combining features led to improve- 

ments in prediction of the cognition compo- 

nent. Combining all modalities was not better 

than simply combining resting and task FC. 
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hown in Figure S18. For the mental health behavior component in the

BCD dataset, only SC and FC models performed above chance, and the

espective best performing models are shown in Figure S19. 

In the HCP dataset, cognition was positively related to cortical vol-

me in the temporal regions and negatively related to the frontal re-

ions. For the TBSS AD model, cognition was positively related to the

uperior cerebral peduncle and corticospinal tract, while negatively re-

ated to the body of the corpus callosum. For the tractography stream

ength model, feature importance was widespread throughout connec-

ions throughout the brain, however, strong negative relations were ob-

erved within the visual network. For the language FC model, strong pos-
11 
tive relations were observed for connections within the default mode

etwork, and negative relations were observed in the connections be-

ween the default mode and attention networks. 

In the ABCD dataset, cognition was positively related to cortical

hickness in the temporal regions and negatively related to the frontal

egions. For the TBSS ICVF model, cognition was positively related to

he corticospinal tract, while negatively related to the tapetum and genu

f the corpus callosum. For the tractography stream FA model, similar

o the tractography features for the best HCP model, feature importance

as widespread throughout connections throughout the brain, however,

trong positive relations were observed within the visual network. For
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Fig. 9. Feature importance for best single-feature-type models (based on KRR) predicting cognition in the HCP dataset. This corresponded to (A) cortical volume for 

T1 measures, (B) AD for TBSS, (C) stream length for tractography and (D) language FC for fMRI. Feature importance values for each single-feature-type model were 

normalized by the standard deviation across the features in the model for visualization. 
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he n-back FC model, strong positive relations were observed in connec-

ions between the default mode and somatomotor networks, whereas

egative relations were observed in the connections between the so-

atomotor and control / dorsal attention networks. 

In the ABCD dataset, similar to Chen and colleagues ( Chen et al.,

022 ), we found that predictive FC features were similar across brain

tates when predicting the same behavioral component score (Figure

20B). Predictive FC features were also positively correlated between

he personality and mental health component scores. In the HCP dataset,

redictive FC features were similar across brain states when predicting

ognitive and emotion component scores, but showed some divergence

hen predicting the dissatisfaction component score (Figure S20A). Pre-

ictive FC features were also similar between cognitive and emotion

omponent scores. 

Finally, when predicting the cognitive component scores, predictive

C features were similar between HCP and ABCD datasets for similar

rain states (Figure S21D). For example, resting FC features were pos-

tively correlated between the two datasets. This was also the case for
 a  

12 
orking memory / N-back FC features. On the other hand, motor FC fea-

ures (from the HCP dataset) were negative correlated with N-back FC

eatures (from the ABCD dataset). Predictive T1 features (Figure S21A)

ere mostly positively correlated between the HCP and ABCD datasets

cross all single-feature-types. The correlation of predictive TBSS fea-

ures (Figure S21B) between datasets were positive between the same

ingle-feature-type, however the correlation between different single-

eature-types showed both positive and negative correlations. Predictive

C features (Figure S21C) showed a modest positive correlation between

he HCP and ABCD datasets for all single-feature-types. 

. Discussion 

In this study, we demonstrated that functional connectivity features

ed to better predictive performance than features derived from anatom-

cal or diffusion MRI. This finding was replicated across two datasets,

nd three regression models. We also found that integrating features

cross modalities through stacking mainly improved predictions for cog-
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Fig. 10. Feature importance for best single-feature-type models (based on KRR) predicting cognition in the ABCD dataset. This corresponded to (A) cortical thickness 

for T1 measures, (B) ICVF for TBSS, (C) FA for tractography and (D) n-back FC for fMRI. Feature importance values for each single-feature-type model were normalized 

by the standard deviation across the features in the model for visualization. 
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ition, but not for other behaviors. Finally, we showed that combining

ll features from all modalities was not better than combining functional

onnectivity features. 

.1. Behavioral prediction using FC versus other modalities 

There are relatively few studies comparing FC prediction with other

odalities in young healthy participants, all of whom focused on the

oung adult HCP dataset. Dhamala showed that resting FC outperformed

C in predicting cognitive performance in the young adult HCP dataset

 Dhamala et al., 2021 ). Similarly, Mansour also showed that high res-

lution resting FC achieved higher accuracy than high resolution SC

nd anatomical features for cognition in the young adult HCP dataset

 Mansour et al., 2021 ). In this study, we replicated Dhamala and Man-

our’s results not just in the young adult HCP dataset, but also in the

esser utilized young children (ABCD) dataset. Similar to Dhamala and

ansour, we observed that FC outperformed the other modalities when

redicting cognition using KRR. In the HCP, FC achieved a correlation
13 
oefficient of between 0.44 – 0.60 using KRR when predicting cogni-

ion, whereas diffusion features were between 0.17 – 0.32, and anatom-

cal features were between 0.21 – 0.24. In the ABCD dataset, we found

 similar trend that FC outperformed other modalities in prediction of

ognition. Moreover, we extended Dhamala and Mansour’s work in two

ther ways. First, Dhamala and Mansour only considered stream counts

n the SC matrix. Here, we considered additional diffusion features from

TI and NODDI models averaged across tracts connecting each pair of

rain regions. We also considered DTI and NODDI features extracted

rom the TBSS skeleton ( Smith et al., 2006 ), which is a widely used ap-

roach. Second, we also considered task FC in addition to resting FC.

hird, we additionally show that the better behavior prediction extends

ver other behavioral components, and the “grand average ” across be-

avioral measures. 

However, we note discrepancy with Rasero and colleagues

 Rasero et al., 2021 ), who showed that the “local connectome ” derived

rom diffusion features was able to outperform resting FC in the HCP

hen predicting cognition. Rasero found that the local connectome was
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t  
ble to predict “global cognition ” with a COD of 0.049, while FC could

nly achieve an accuracy of 0.016. Conversely, in our study, we found

hat resting FC could achieve a COD of 0.25 in the cognition compo-

ent, and diffusion features from SC ranged between a COD of 0.026-

.061. Therefore, our diffusion prediction performance was comparable

o Rasero, but our FC prediction performance was significantly better. 

One possible reason for this discrepancy might be due to differences

etween Rasero’s tabulation of “global cognition ” and our cognition

omponent, although this cannot explain that our diffusion prediction

erformance is similar. Another possible reason might be related to fMRI

reprocessing, e.g., Rasero opted not to perform GSR on fMRI data,

hich might have improved prediction performance ( Li et al., 2019 ).

ther reasons might be parcellation choice or the application of PCA on

he FC features prior to prediction. 

Our results are also inconsistent with Xiao and colleagues ( Xiao et al.,

021 ), who found that anatomical features were able to outperform both

unctional and diffusion features in predicting visual working memory.

ne potential discrepancy is the use of the CAM-CAN dataset, which

ocused on elderly participants. It is possible, that our results hold for

oung healthy participants, but not older participants, perhaps due to

ate-life age related changes in brain anatomy. 

.2. Prediction of cognition is better than other behavioral components 

Previous studies from our group have shown that it’s easier to pre-

ict cognition than other measures when using FC ( Kong et al., 2019 ;

i et al., 2019 ; Liégeois et al., 2019 ; Kong et al., 2021 ; Chen et al., 2022 ).

ansour and colleagues extended this result by showing that this is also

rue for anatomical and diffusion MRI in the HCP. Our current study

onfirmed Mansour’s results and replicated them in a new independent

BCD dataset. 

Attaining better prediction for cognitive behavior compared to the

ther behavior components might be due to the subjective nature of

ersonality and emotion, which might result in additional difficulty in

redicting them. For example, Uher has described a lack of explicit for-

ulation when investigating personality traits ( Uher, 2015 ). This could

esult in greater difficulty in predicting such scores with a more subjec-

ive nature using brain imaging ( Dubois et al., 2018 ). Another study has

lso suggested that further improvements to prediction of psychiatric

llness and behavior could be attained by optimizing the reliability of

henotypic data ( Nikolaidis et al., 2022 ). As such, we might expect to

ee increases in prediction performances of personality and emotion as

eliability of behavioral measures increase. 

Additionally, difficulty in predicting behavioral measures such as

ental health could arise due to the lack of representation in datasets

ith healthy population. The participants within healthy datasets are

ikely sub-thresholded with respect to psychiatric risk, thus may not be

 complete depiction of the population that the clinical field is interested

n tackling. 

.3. Multimodal integration 

Recent studies have suggested that task FC achieves better predic-

ion of cognition over resting FC ( Rosenberg et al., 2016 ; Greene et al.,

018 ; Jiang et al., 2020 ). Furthermore, combining task and resting FC in

he young adult HCP dataset further boosts the prediction of cognition

 Elliott et al., 2019 ; Gao et al., 2019 ). Chen and colleagues further ex-

anded on this by showing that combining resting and task FC improved

rediction of cognition in ABCD with little or no improvement for other

ehavioral components ( Chen et al., 2022 ). We replicated these previous

esults in the HCP and ABCD datasets. 

The language and working memory task FCs in the HCP, and n-back

nd MID task FCs in the ABCD outperformed predictions from resting

C, despite resting fMRI having substantially more data. The lower pre-

ictive power of resting FC could possibly be explained from its nature
14 
s a culmination of multiple states ( Leonardi et al., 2014 ), resulting in in-

reased noise that hinders the prediction of individual traits. Conversely,

ask fMRI could provide controlled manipulations of brain states which

ffect task-relevant networks ( Lowe et al., 2000 ; Gratton et al., 2018 ).

he use of cognitive tasks such as the n-back (working memory) in fMRI

ould serve to amplify individual differences in networks specific to cog-

ition, thus facilitating better predictions. However, not all task FCs out-

erform resting FC. For example, the motor task FC in the HCP dataset

ould possibly have poorer prediction performance as compared to the

ther FC models because it does not include cognitive functions. In the

ase of the ABCD dataset, the SST task FC performed marginally worse

han the other FC models. It is possible that the SST task which involves

nhibition, does not amplify individual differences as much as other cog-

itive tasks such as the n-back. 

We also extended these results further by showing that combining

esting and task FC was as good as combining all features from all modal-

ties. A possible explanation for the lack of improvement when combin-

ng all modalities is that interindividual differences in functional and

tructural brain characteristics lead to similar behavior changes. This

as been observed by Llera and colleagues, who showed that modes of

ariation linking behavior to structural variation and behavior to func-

ional variation significantly overlap ( Llera et al., 2019 ). Together with

he superior performance of FC in predicting behavior, this suggests that

iffusion and anatomical features might not contain behavior-related

ariation outside what FC already contains. 

We note that our results were consistent with Dhamala and col-

eagues ( Dhamala et al., 2021 ), who found that combining resting FC

nd SC did not increase prediction accuracy of cognition. In our study,

tacking models that combined anatomical, diffusion and FC features

ere not significantly better than stacking models that combined only

ask and resting FC features. We expanded Dhamala’s work by showing

he consistency of this finding in the ABCD dataset and by considering

 wider range of features. More specifically, we show that neither the

nclusion of anatomical data, nor the wider range of diffusion features

ould boost prediction performance above what could be achieved from

ntegrating the various FC features. 

However, we note that our results were inconsistent with that of

asero and colleagues ( Rasero et al., 2021 ), who found improvements

n prediction of global cognition when stacking anatomical, diffusion

nd FC features. The discrepancy could be due to the much better pre-

iction performance of FC in our current study, compared with Rasero

nd colleagues. Given that prediction performance of FC features was

uch better than diffusion and anatomical features in our current study,

here might be limited gain in combining functional with anatomical or

iffusion features. 

.4. Feature importance for best single-feature-type models 

The frontal lobe has been known to play a role in cognition

 Fuster, 2002 ) and personality ( Chow, 2000 ). When analyzing predic-

ive T1 features for the best performing T1 models, we similarly ob-

erved that areas in the frontal lobe had a relatively high contribution

o the prediction of cognition component score in both datasets, and

ersonality component score in the ABCD dataset. Additionally, predic-

ive T1 features exhibited positive correlations across both datasets for

ll single-feature-types when predicting cognition. This could suggest

ome consistency in the regions that are linked to cognition across young

dults and children. 

For diffusion models, TBSS models could predict cognition in both

atasets, and personality in the ABCD dataset above chance. The best

erforming models for these 3 behavior components had a higher de-

endence on the corticospinal tract, cerebral peduncles, and tracts for

rediction. In the case of predictive SC features, feature importance

eemed widespread throughout the networks, regardless of behavior.

owever, in the case of predictive SC features for cognition, connec-

ions to the visual network appeared more salient in the best perform-
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ng model for both datasets. The importance of the visual network has

lso been observed in Dhamala’s work ( Dhamala et al., 2021 ). Interest-

ngly, when predicting cognition, predictive SC features were positively

orrelated between datasets, whereas there was no clear pattern for pre-

ictive TBSS features between datasets. 

When analysing the best performing FC models, predictive FC fea-

ures differed across the behavior components. However, when compar-

ng predictive FC features from all FC models for any given behavioral

omponent score, we found that the predictive FC features exhibited a

ositive correlation. Our results in the ABCD dataset were consistent

ith Chen’s findings ( Chen et al., 2022 ). We also extend these results

y showing a similar correspondence across predictive FC features for

ehavioral component scores in the HCP. When comparing cognition

redictive FC features between the HCP and ABCD datasets, higher pos-

tive correlations were observed between predictive FC features from

imilar brain states. This could suggest that task fMRI modulates similar

etworks supporting cognitive functions in young adults and children. 

.5. Limitations, methodological considerations and future work 

The feature dimensionalities varied greatly across modalities. For

xample, in the case of cortical thickness, there were 400 features per

articipant, corresponding to the 400-region Schaefer parcellation. Both

he SC and FC matrices comprised 79,800 features (corresponding to the

ower portion of the 400 × 400 matrix) per participant. Finally, in the

ase of TBSS, there were 133k and 109k for HCP and ABCD respectively.

espite the great variation in the number of features, we note that the

ross-validation framework obviates the need to control for the number

f features. The reason is that more features could lead to overly com-

lex models and poor performance in the out-of-sample data. Indeed,

C outperformed TBSS despite having less features. 

We have shown that FC outperforms other features across KRR, LRR

nd elastic net regressions. However, we do note that LRR and elastic

et are similar types of regression algorithms with both containing a

 2 regularization term, which may lead to some similarity between the

esults. 

In this study, we have mainly focused on prediction using the 400

ortical ROIs from the Schaefer parcellation. In the case of anatomi-

al features, we did not include contributions from subcortical regions

o allow for fair comparisons among surface, thickness and volumetric

eatures – there’s no concept of surface and thickness for subcortical

tructures. Given that we excluded subcortical structures for anatomi-

al features, we also decided to exclude subcortical structures from the

unctional and structural connectivity analyses in order to be consistent.

In this study, we did not consider microstructural measures of myeli-

ation in the intracortical areas (e.g. cortical myelin maps estimated

y T1/T2 ratio ( Glasser & Van Essen, 2011 ), or radial directionality of

yelin along the cortical depth ( McNab et al., 2013 ). Although a be-

avioral prediction study utilizing microstructural properties within the

ray matter found some success in neonates ( Ouyang et al., 2020 ), stud-

es investigating these properties in healthy adult populations have been

are. It is therefore unclear whether these predictive properties still hold

ast the period of early cortical development. Further investigation of

ray matter microstructure might reveal improved predictions of behav-

or over those yielded by the white matter microstructure in this study.

Here, we have shown that FC outperforms diffusion and anatom-

cal features in young healthy participants. However, several studies

ave begun to explore the value of multimodal individualized predic-

ion performance in disease populations ( Meng et al., 2017 ; Sui et al.,

020 ) and in aging ( Engemann et al., 2020 ; Xiao et al., 2021 ), show-

ng improved prediction of clinical markers with multimodal imaging

 Mill et al., 2021 ). The benefits of multimodal imaging could be further

xplored in future work, focusing on the identification of disease and ag-

ng markers that can benefit from multimodal imaging, and comparing

he utility of each modality in predicting these markers. 
15 
. Conclusion 

Through applying KRR, LRR, and elastic net regression to anatomi-

al, diffusion and functional connectivity features in the HCP and ABCD

atasets, we showed that functional connectivity was able to achieve

etter prediction of behavioral traits. Combining resting and task FC

mproved prediction of cognition, but not other behavioral traits. On

he other hand, there was no additional benefit from combining all fea-

ures from all modalities compared with combining resting and task FC,

uggesting that FC features might encompass behaviorally relevant in-

ormation from anatomical and diffusion features. 

. Data and code availability 

The lists of participants, features, and behavior scores utilized are

eleased for both datasets. Data for the HCP are available in this

ithub repository ( https://github.com/ThomasYeoLab/Ooi2022 _ MMP _

CP ). Data for the ABCD are available on the NIMH Data Archive (NDA)

ebsite ( https://dx.doi.org/10.15154/1523482 ). The folder structure

or ABCD is similar to that of the HCP. Any additional data can be

ccessed directly from the HCP ( https://www.humanconnectome.org/ )

nd ABCD ( https://abcdstudy.org/ ) websites, as they are both publicly

vailable. 

Code for this study is publicly available in the Github reposi-

ory maintained by the Computational Brain Imaging Group ( https:

/github.com/ThomasYeoLab/CBIG ). Code specific to the regression

odels and analyses in this study can be found here ( https://github.

om/ThomasYeoLab/Standalone _ Ooi2022 _ MMP ). 

a. To replicate the results in this study, first download the features and

training-test splits provided for each dataset, and train the regression

algorithms with the regression code from the CBIG repository. 

b. To compare a new set of features against the benchmarks in this

study. Download the participant list and training-test split for each

dataset. Using the participant list provided in each dataset reposi-

tory, extract a #features x #participants matrix for each participant

in the list and perform the predictions using the regression codes

from the CBIG repository using the same training-test splits. 

c. To compare a new predictive model against the benchmarks in this

study, download the features and training-test splits for each dataset.

Using the same features and training-test splits, predictive perfor-

mance of the new model can be compared to the results in this study.

Processing pipelines for diffusion data ( https://github.com/

homasYeoLab/CBIG/tree/master/stable _ projects/preprocessing/ 

BIG2022 _ DiffProc ), and functional data ( https://github.com/

homasYeoLab/CBIG/tree/master/stable _ projects/preprocessing/ 

BIG _ fMRI _ Preproc2016 ) are provided in their respective links. 
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ppendix 

1.1. Single-kernel ridge regression 

Here, we provide a brief explanation of single-kernel ridge regression

hat has been adapted from our previous study ( Kong et al., 2019 ). 

Suppose we have 𝑀 training subjects. For each subject 𝑖 , let 𝑦 𝑖 rep-

esent its behavioral measure (e.g. fluid intelligence) and 𝐹 𝑖 be a vector

f its brain features (e.g., lower triangle of functional connectivity [FC]

atrix). Given a training set with ( 𝑦 1 , 𝑦 2 , … , 𝑦 𝑀 

) and ( 𝐹 1 , 𝐹 2 , … , 𝐹 𝑀 

) ,
he kernel regression model is written as: 

 𝑖 = 𝛽0 + 

𝑀 ∑
𝑗=1 

𝛼𝑗 𝐾 

(
𝐹 𝑗 , 𝐹 𝑖 

)
(1)

𝛽0 represents the bias term, and 𝐾( 𝐹 𝑗 , 𝐹 𝑖 ) represents the similarity of

he brain feature vectors from the 𝑗-th and 𝑖 -th subject in the training

et. In this study, 𝐾( 𝐹 𝑗 , 𝐹 𝑖 ) is defined by the correlation between the

ectorized brain features of the two subjects. The choice of correlation is

otivated by previous fingerprinting and behavioral prediction studies

 Finn et al., 2015 ; Li et al., 2019 ; He et al., 2020 ). 

To estimate 𝜶 and 𝛽0 from the training set, we define 𝒚 =
 𝑦 1 , 𝑦 2 , … , 𝑦 𝑀 

] 𝑇 , 𝜶 = [ 𝛼1 , 𝛼2 , … , 𝛼𝑀 

] 𝑇 , and 𝜅 as a 𝑀 ×𝑀 similarity

atrix where the ( 𝑗, 𝑖 ) -th element is 𝐾( 𝐹 𝑗 , 𝐹 𝑖 ) . We minimize the follow-

ng l 2 regularized cost function: 

𝜶, 𝛽0 
)
= argmin 

( 𝜶,𝛽0 ) 
1 
2 
(
𝒚 − 𝜅𝜶 − 𝛽𝑜 

)𝑇 (
𝒚 − 𝜅𝜶 − 𝛽0 

)
+ 

𝜆

2 
𝜶𝑻 𝜅𝜶 (2)

𝜆 is a parameter that controls the strength of the l 2 regularization

nd is estimated within the inner-loop cross validation procedure. The

est set is not used to estimate 𝜆. The predicted behavioral score for a
16 
ew subject 𝑡 is given by: 

 ̂𝑡 = 𝛽0 + 

𝑀 ∑
𝑖 =1 

𝛼𝑖 𝐾 

(
𝐹 𝑖 , 𝐹 𝑡 

)
(3)

1.2. Multi-kernel ridge regression 

The single-kernel ridge regression can be extended to make a pre-

iction using multiple types of brain features (e.g., using both rest and

ask FC). A kernel similarity matrix is constructed for each type of brain

eature. Presume that we have 𝑀 training subjects and 𝑅 types of brain

eatures. We define 𝑦 𝑖 as the behavioral measure of the 𝑖 -th subject. 𝐹 𝑖𝑟 
s defined as the 𝑟 -th type of vectorized brain feature for the 𝑖 -th subject.

he multikernel regression model is written as: 

 𝑖 = 𝛽0 + 

𝑅 ∑
𝑟 =1 

𝑀 ∑
𝑗=1 

𝛼𝑗𝑟 𝐾 

(
𝐹 𝑗𝑟 , 𝐹 𝑖𝑟 

)
(4)

Like the single-kernel ridge regression case, 𝛽0 is the bias term.

( 𝐹 𝑗𝑟 , 𝐹 𝑖𝑟 ) represents the similarity (correlation between vectorized

rain features) between the 𝑗-th and 𝑖 -th subject for the 𝑟 -th type of

rain feature. 

To estimate 𝜶𝒓 and 𝛽0 from the training set, we define 𝒚 =
 𝑦 1 , 𝑦 2 , … , 𝑦 𝑀 

] 𝑇 , 𝜶𝒓 = [ 𝛼1 𝑟 , 𝛼2 𝑟 , … , 𝛼𝑀𝑟 ] 𝑇 , and 𝜅𝑟 as the 𝑀 ×𝑀 simi-

arity matrix for the 𝑟 -th type of brain feature where the ( 𝑗, 𝑖 ) -th element

s 𝐾( 𝐹 𝑗𝑟 , 𝐹 𝑖𝑟 ) . We minimize the following l 2 regularized cost function: 

𝜶𝒓 , … , 𝜶𝑹 𝛽0 
)

= argmin 
( 𝜶1 , …, 𝜶𝑹 , 𝛽0 ) 

1 
2 

( 

𝒚 − 𝛽0 − 

𝑅 ∑
𝑟 =1 

𝜅𝑟 𝜶𝒓 

) 𝑇 ( 

𝒚 − 𝛽0 − 

𝑅 ∑
𝑟 =1 

𝜅𝑟 𝜶𝒓 

) 

+ 

1 
2 

𝑅 ∑
𝑟 =1 

𝜆𝑟 𝜶
𝑻 
𝑟 𝜅𝑟 𝜶𝒓 (5) 

𝜆𝑟 controls the strength of the l 2 regularization for the 𝑟 -th kernel.

ere, 𝜆𝑟 is estimated within the inner-loop cross validation procedure

sing Gaussian process optimization ( Kawaguchi et al., 2015 ). The test

et is not used to estimate 𝜆𝑟 . The predicted behavior score for a new

ubject 𝑡 is given by: 

 ̂𝑡 = 𝛽0 + 

𝑅 ∑
𝑟 =1 

𝑀 ∑
𝑖 =1 

𝛼𝑖𝑟 𝐾 

(
𝐹 𝑖𝑟 , 𝐹 𝑡𝑟 

)
(6)
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