001     915920
005     20230113085414.0
024 7 _ |a 10.1063/5.0088601
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 2128/33182
|2 Handle
024 7 _ |a 35778071
|2 pmid
024 7 _ |a WOS:000816964600002
|2 WOS
037 _ _ |a FZJ-2022-05783
082 _ _ |a 530
100 1 _ |a Hansen, Jan
|0 0000-0002-4819-4559
|b 0
245 _ _ |a Universal effective interactions of globular proteins close to liquid–liquid phase separation: Corresponding-states behavior reflected in the structure factor
260 _ _ |a Melville, NY
|c 2022
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671201642_23721
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intermolecular interactions in protein solutions, in general, contain many contributions. If short-range attractions dominate, the state diagram exhibits liquid–liquid phase separation (LLPS) that is metastable with respect to crystallization. In this case, the extended law of corresponding states (ELCS) suggests that thermodynamic properties are insensitive to details of the underlying interaction potential. Using lysozyme solutions, we investigate the applicability of the ELCS to the static structure factor and how far effective colloidal interaction models can help to rationalize the phase behavior and interactions of protein solutions in the vicinity of the LLPS binodal. The (effective) structure factor has been determined by small-angle x-ray scattering. It can be described by Baxter’s adhesive hard-sphere model, which implies a single fit parameter from which the normalized second virial coefficient b2 is inferred and found to quantitatively agree with previous results from static light scattering. The b2 values are independent of protein concentration but systematically vary with temperature and solution composition, i.e., salt and additive content. If plotted as a function of temperature normalized by the critical temperature, the values of b2 follow a universal behavior. These findings validate the applicability of the ELCS to globular protein solutions and indicate that the ELCS can also be reflected in the structure factor.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pedersen, Jannik N.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pedersen, Jan Skov
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Egelhaaf, Stefan U.
|0 P:(DE-Juel1)IHRS-BioSoft-20902
|b 3
700 1 _ |a Platten, Florian
|0 P:(DE-Juel1)180761
|b 4
|e Corresponding author
773 _ _ |a 10.1063/5.0088601
|g Vol. 156, no. 24, p. 244903 -
|0 PERI:(DE-600)1473050-9
|n 24
|p 244903 -
|t The journal of chemical physics
|v 156
|y 2022
|x 0021-9606
856 4 _ |y Published on 2022-06-27. Available in OpenAccess from 2023-06-27.
|u https://juser.fz-juelich.de/record/915920/files/2206.04886.pdf
856 4 _ |y Published on 2022-06-27. Available in OpenAccess from 2023-06-27.
|u https://juser.fz-juelich.de/record/915920/files/5.0088601.pdf
909 C O |o oai:juser.fz-juelich.de:915920
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-4819-4559
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-Juel1)IHRS-BioSoft-20902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180761
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2021
|d 2022-11-25
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21