-~

OpenACC CUDA Interoperability
JSC OpenACC Course 2022

28 October 2022 | Kaveh Haghighi Mood, Andreas Herten | Forschungszentrum Jiilich

@) JULICH| 2
SUPERCOMPUTING
Member of the Helmholtz Association Forschungszentrum | CENTRE

Contents
OpenACC is a team player!

OpenACC can interplay with
= CUDA
» GPU-enabled libraries and applications

@) JULICH| 5
SUPERCOMPUTING
Member of the Helmholtz Association 28 October 2022 Slide 1126 Forschungszentrum CENTRE

Contents
OpenACC is a team player!

OpenACC can interplay with
= CUDA
» GPU-enabled libraries and applications

Member of the Helmholtz Association 28 October 2022

Motivation
The Keyword
Tasks
Task 1
Task 2
Task 3
Task 4

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Slide 1126 J Forschungszentrum

Motivation

Usually, three reasons for mixing OpenACC with others
Libraries!

= A lot of hard problems have already been solved by others
— Make use of this!

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 2126 J Forschungszentrum

Motivation

Usually, three reasons for mixing OpenACC with others
Libraries!

= A lot of hard problems have already been solved by others
— Make use of this!

Existing environment

= You build up on other’s work
= Part of code is already ported (e.g. with CUDA), the rest should follow
= OpenACCis a good first step in porting, CUDA a possible next

Member of the Helmholtz Association 28 October 2022 Slide 2126 J

JULICH
SUPERCOMPUTING
CENTRE

JULICH

Forschungszentrum

Motivation

Usually, three reasons for mixing OpenACC with others
Libraries!
= A lot of hard problems have already been solved by others
— Make use of this!
Existing environment

= You build up on other’s work
= Part of code is already ported (e.g. with CUDA), the rest should follow
= OpenACCis a good first step in porting, CUDA a possible next

OpenACC coverage

= Sometimes, OpenACC does not support specific part needed (very well)
= Sometimes, more fine-grained manipulation needed

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 2126 J Forschungszentrum

The Keyword

OpenACC’s Rosetta Stone

host data use device

@) JULICH| 2
SUPERCOMPUTING
Member of the Helmholtz Association 28 October 2022 Slide 3126 Forschungszentrum CENTRE

The Keyword

OpenACC’s Rosetta Stone

= Background
= GPU and CPU are different devices, have different memory
— Distinct address spaces
= OpenACC hides handling of addresses from user
= For every chunk of accelerated data, two addresses exist

= One for CPU data, one for GPU data
= OpenACC uses appropriate address in accelerated kernel
= But: Automatic handling not working when out of OpenACC (OpenACC will default to host
address)
— host_data use_device usesthe address of the GPU device data for scope

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 3126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

The host_data Construct

C

= Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device

{

#pragma acc host_data use_device(foo)
some_1func(foo); // Device: OK!

}
» Directive can be used for structured block as well

Member of the Helmholtz Association 28 October 2022 Slide 4126

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

The host_data Construct

Fortran

= Usage example
real(8) :: foo(N) ! foo on Host
!$acc data copyin(foo) ! foo on Device

!$acc host_data use_device(foo)
call some_func(foo); ! Device: OK!
!$acc end host_data

!$acc end data

Member of the Helmholtz Association 28 October 2022 Slide 4126

9

JULICH

Forschungszentrum

FORTRAN

JULICH
SUPERCOMPUTING
CENTRE

The Inverse: deviceptr
When CUDA is involved

= For the inverse case:
= Data has been copied by CUDA or a CUDA-using library
= Pointer to data residing on devices is returned
— Use this data in OpenACC context

= deviceptr clause declares data to be on device

Member of the Helmholtz Association 28 October 2022 Slide 5126

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

The Inverse: deviceptr
When CUDA is involved

= For the inverse case:
= Data has been copied by CUDA or a CUDA-using library
= Pointer to data residing on devices is returned
— Use this data in OpenACC context
= deviceptr clause declares data to be on device
= Usage (C):
float * n;
int n = 4223;
cudaMalloc((void**)&x, (size_t)n*sizeof(float));

#pragma acc kernels deviceptr(x)

for (int i = 0; i < n; i++) {
x[i] = 1;
}

Member of the Helmholtz Association 28 October 2022 Slide 5126

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

The Inverse: deviceptr
When CUDA is involved

= For the inverse case:
= Data has been copied by CUDA or a CUDA-using library
= Pointer to data residing on devices is returned
— Use this data in OpenACC context
= deviceptr clause declares data to be on device
= Usage (Fortran):

integer, parameter :: n = 4223
real, device, dimension(N) :: x ! automatically on device
integer :: i

]
I$acc kernels deviceptr(x)
do i=1, n
x(1i) = 1
end do
!$acc end kernels
JULICH

SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 28 October 2022

g JULICH

Forschungszentrum

Slide 5126

Tasks

JULICH | srcrconrumne

Member of the Helmholtz Association 28 October 2022 Slide 6126 Forschungszentrum CENTRE

Tasks
Task 1

JULICH | srcrconrumne

Member of the Helmholtz Association 28 October 2022 Slide 7126 Forschungszentrum CENTRE

Task 1

Introduction to BLAS

Use case: Anything linear algebra
BLAS: Basic Linear Algebra Subprograms
= Vector-vector, vector-matrix, matrix-matrix operations
= Specification of routines
= Examples: SAXPY, DGEMV, ZGEMM
— http://www.netlib.org/blas/
cuBLAS: NVIDIA’s linear algebra routines with BLAS interface, readily accelerated
—http://docs.nvidia.com/cuda/cublas/

Task 1: Use cuBLAS for vector addition, everything else with OpenACC

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 8126 J Forschungszentrum

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/

Task 1

cuBLAS OpenACC Interaction

= cuBLAS routine used:
cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy)

= handle capsules GPU auxiliary data, needs to be created and destroyed with
cublasCreate and cublasDestroy

= x and y point to addresses on device!
= cuBLAS library needs to be linked with - Lcublas

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 9126

Task 1

cuBLAS on Fortran

= Nvidia offers bindings to cuBLAS out of the box
integer(4) function cublasdaxpy_v2(h, n, a, x, incx, y, incy)
type(cublasHandle) :: h

integer :: n

real(8) :: a

real(8), device, dimension(*) :: X, y

integer :: incx, incy
m Usage: use cublasincode;add -Mcuda -Lcublas during compilation
m Notes

® Legacy (vI) cuBLAS bindings (no handle) also available, i.e. cublasdaxpy ()
= nvfortran allows to omit host_data use_device, but not recommended
= Module openacc_cublas exists, specifically designed for usage with OpenACC (no need for host_data
use_device)
=- Both not part of training

— https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaint. pdf

g JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 28 October 2022 Slide 10126

https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaint.pdf

Task 1

Vector Addition with cuBLAS

= Use cuBLAS for vector addition

Location of code:
5-Interoperability/Tasks/{C,Fortran}/Tasks/Task1l
Work on TODOs in vecAddRed. {c, FO3}

= Usehost_data use_device to provide correct pointer
= Check cuBLAS documentation for details on cublasDaxpy()

Compile: make
Submit to the batch system: make run

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 11126 J Forschungszentrum

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

Tasks
Task 2

JULICH | srcrconrumne

Member of the Helmholtz Association 28 October 2022 Slide 12126 Forschungszentrum CENTRE

Task 2

CUDA Need-to-Know

= Use case:

= Working on legacy code
= Need the raw power (/flexibility) of CUDA

= CUDA need-to-knows:
= Thread — Block — Grid

Total number of threads should map to your problem; threads are alway given per block
= Akernelis called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(argl, arg2, ...)
= Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x
— http://docs.nvidia.com/cuda/

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 13126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

http://docs.nvidia.com/cuda/

Task 2

Vector Addition with CUDA Kernel: C
m CUDA kernel for vector addition, rest OpenACC
® Marrying CUDA C and OpenACC:
m No need to use wrappers! OpenACC and CUDA directly supported by nvc++

= Changeto5-Interoperability/Tasks/C/Tasks/Task2 directory
= Work on TODOs in vecAddRed. c

= Usehost_data use_device to provide correct pointer

= Implement computation in kernel, implement call of kernel

= Compile: make; Submit to the batch system: make run

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 14126

Task 2
F
Vector Addition with CUDA Kernel: Fortran
m CUDA kernel for vector addition, rest OpenACC

® Marrying CUDA Fortran and OpenACC:

= No need to use wrappers! OpenACC and CUDA Fortran directly supported in same source

®m Having a dedicated module file could make sense anvwav

= Changeto5-Interoperability/Tasks/Fortran/Tasks/Task2
directory

= Work on TODOs in vecAddRed . FO3

= Use host_data use_device to provide correct pointer
= Implement computation in kernel, implement call of kernel

= Compile: make; Submit to the batch system: make run

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 14126 J

Forschungszentrum

Tasks
Task 3

JULICH | srcrconrumne

Member of the Helmholtz Association 28 October 2022 Slide 15126 Forschungszentrum CENTRE

Thrust

Iterators! Iterators everywhere! 1;‘

a Thrust _ STL
CUDA — C++

Template library
Based on iterators, but also works with plain C

— http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 28 October 2022 Slide 16126

Data-parallel primitives (scan(), sort (), reduce(),...); algorithms

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust

Code example

int a = 42;

int n = 10;

thrust::host_vector<float> x(n), y(n);
// Fill x, y

thrust::device_vector d_x = x, d_y = vy;

using namespace thrust: :placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

X = d_x;

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 17126

Task 3

Vector Addition with Thrust: C

= Use Thrust for reduction, everything else of vector addition with OpenACC

Change to directory 5-Interoperability/Tasks/C/Tasks/Task3
Work on TODOs in vecAddRed. c

= Usehost_data use_device to provide correct pointer
= Implement callto thrust: :reduce usingc_ptr

Compile: make

Submit to the batch system: make run

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 18126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task 3

Vector Addition with Thrust: Fortran

= Use Thrust for reduction, everything else of vector addition with OpenACC
= Thrust used via ISO_C_BINDING (one more wrapper)

Change to directory
5-Interoperability/Tasks/Fortran/Tasks/Task3
Work on TODOs in vecAddRed . F03, thrustWrapper.cuand
fortranthrust.FO3

= Familiarize yourself with setup of Thrust called via ISO_C_BINDING
= Usehost_data use_device to provide correct pointer
= Implement callto thrust: :reduce usingc_ptr

Compile: make

Submit to the batch system: make run

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 18126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Tasks
Task 4

JULICH | srcrconrumne

Member of the Helmholtz Association 28 October 2022 Slide 19126 Forschungszentrum CENTRE

Task 4

Stating the Problem
= We want to solve the Poisson equation
A(D(X7y) = _p(Xay)

with periodic boundary conditionsin xand y

Needed, e.g., for finding electrostatic potential ® for a given charge distribution p
Model problem

p(x,y) = cos(4mx)sin(2my)
(xy) € [0,1)?

Analytically known: ®(x,y) = ®g cos(41x) sin(2my)
Let’s solve the Poisson equation with a Fourier Transform!

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 20126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task 4

Introduction to Fourier Transforms

m Discrete Fourier Transform and Re-Transform:
N—1) -
A _ 2mik ; o2y
fr = Z fe- W o f= e n
j=0

= Time for all fi: O(N?)
= Fast Fourier Transform: Recursively splitting — O(N log(N))
= Find derivatives in Fourier space:

Nfl 2 r
/ o £ W
=" ikfre ¥
k=0
It’s just multiplying by ik!
'J JULICH JULICH
SUPERCOMPUTING

Member of the Helmholtz Association 28 October 2022 Slide 21126 Forschungszentrum CENTRE

Task 4

Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p
b« F(p)
Integrate p in Fourier space twice
b —p/ (K + k)
Inverse Fourier-transform $

b« FY()

Member of the Helmholtz Association 28 October 2022 Slide 22126

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task 4

Plan for FFT Poisson Solution

Start with charge density p
Fourier-transform p
p« F(p)
Integrate p in Fourier space twice
¢« —p/ (ki + k)
Inverse Fourier-transform $

b« F ()

Member of the Helmholtz Association 28 October 2022

Slide 22126

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task 4
cuFFT: C

= cuFFT: NVIDIA’s (Fast) Fourier Transform library
= 1D, 2D, 3D transforms; complex and real data types
= Asynchronous execution
Modeled after FFTW library (API)
= Part of CUDA Toolkit
= Fortran: NVIDIA offers bindings with use cufft
— https://developer.nvidia.com/cufft
cufftDoubleComplex *src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);
cufftExecz2zZ(plan, src, tgt, CUFFT_FORWARD); // FFT

cufftExecz2z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo A/----2

cufftDestroy(plan); // Clean-up

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 23126

https://developer.nvidia.com/cufft

Task 4
cuFFT: Fortran

= cuFFT: NVIDIA’s (Fast) Fourier Transform library
= 1D, 2D, 3D transforms; complex and real data types
= Asynchronous execution
Modeled after FFTW library (API)
= Part of CUDA Toolkit
= Fortran: NVIDIA offers bindings with use cufft
— https://developer.nvidia.com/cufft
double complex, allocatable :: src(:,:), tgt(:,:) ! Device
integer :: plan, ierr
! Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
ierr = cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z)
ierr cufftExecz2z(plan, src, tgt, CUFFT_FORWARD) ! FFT
ierr = cufftExecz2z(plan, tgt, tgt, CUFFT_INVERSE) ! iFFT
! Inplace trafo AR
ierr = cufftDestroy(plan) ! Clean-up

g JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Member of the Helmholtz Association 28 October 2022 Slide 23126

https://developer.nvidia.com/cufft

Task 4
Synchronizing cuFFT: C

= CUDA Streams enable interleaving of computational tasks
= cuFFT uses streams for asynchronous execution

m cuFFT runs in default CUDA stream;
OpenACC does not — trouble

= Force cuFFT on OpenACC stream

#include <openacc.h>

// Obtain the OpenACC default stream id

cudaStream_t accStream = (cudaStream_t) acc_get_cuda_stream(acc_async_sync);
// Execute all cufft calls on this stream

cufftSetStream(accStream);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 24126

Task 4

Synchronizing cuFFT: Fortran

= CUDA Streams enable interleaving of computational tasks
= cuFFT uses streams for asynchronous execution

= cUFFT runs in default CUDA stream;
OpenACC does not — trouble

= Force cuFFT on OpenACC stream

use openacc

integer :: stream

! Obtain the OpenACC default stream id
stream = acc_get_cuda_stream(acc_async_sync)
! Execute all cufft calls on this stream
ierr = cufftSetStream(plan, stream)

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 28 October 2022 Slide 24126

Task 4

OpenACC and cuFFT

= Use case: Fourier transforms
= Use cuFFT and OpenACC to solve Poisson’s Equation

= Changeto Interoperability/Tasks/{C,Fortran}/Tasks/Task4
directory
= Work on TODOs in poisson. {c, FO3}

solveRSpace Force cuFFT on correct stream; implement data handling with
host_data use_device
solveKSpace Implement data handling and parallelism

= Compile: make
= Submit to the batch system: make run

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 25126 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Summary & Conclusion

= |f needed, OpenACC can play team with

= GPU-accelerated libraries
= Plain CUDA code

= For Fortran, ISO_C_BINDING might be needed

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 26126 J Forschungszentrum

Summary & Conclusion

= |f needed, OpenACC can play team with

= GPU-accelerated libraries
= Plain CUDA code

= For Fortran, ISO_C_BINDING might be needed

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 26126 J Forschungszentrum

Appendix

Glossary
References
@) JULICH| &
SUPERCOMPUTING
Member of the Helmholtz Association 28 October 2022 Slide 114 Furschungszen"u,—n CENTRE

List of Tasks

Task 1: OpenACC+cuBLAS
19Task 2: OpenACC+CUDA
22Task 3: OpenACC+Thrust
27Task 4: OpenACC+cuFFT
38

Member of the Helmholtz Association 28 October 2022 Slide 214

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Glossary |

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2,3,4,5,6,11,12,13,21, 22,23, 34, 35, 36, 37, 39, 40, 42

NVIDIA US technology company creating GPUs. 16, 34, 35, 43

OpenACC Directive-based programming, primarily for many-core machines. 1,2, 3,4,5, 6,
7,8,11,12,13,16,17,18, 19, 22, 23, 27, 28, 32, 33, 36, 37, 38, 39, 40, 42

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 25,26,27,28,42

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 Slide 314 J Forschungszentrum

https://thrust.github.io/

References: Images, Graphics |

[1] Chester Alvarez. Untitled. Freely available at Unsplash. URL:
https://unsplash.com/photos/bphc6ékyobMg.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 28 October 2022 slide 414 J Forschungszentrum

https://unsplash.com/photos/bphc6kyobMg

	Outline
	Motivation
	The Keyword
	Tasks
	Task 1
	Task 2
	Task 3
	Task 4

	Summary
	Appendix
	Appendix
	Glossary

	Glossary
	References

	References

