001     915930
005     20221215131532.0
037 _ _ |a FZJ-2022-05793
041 _ _ |a English
100 1 _ |a Dombinov, Vitalij
|0 P:(DE-Juel1)168421
|b 0
|e Corresponding author
|u fzj
111 2 _ |a ESCP4 + PERM5
|c Vienna
|d 2022-06-20 - 2022-06-21
|w Austria
245 _ _ |a Sugarcane bagasse-based ashes as fertiliser for soybeans and the relevance of ash mineral composition on plant phosphorus availability
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1671031065_6875
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Sugarcane bagasse, the lignocellulosic remains of sugar cane processing is commonly burnt to generate electricity. Recycling strategies for the resulting ashes rarely take the remaining plant nutrients into account. The objective of this study was to investigate the potential of ashes sourced from combustion and gasification of bagasse alone and in combination with chicken manure and sewage sludge, respectively, as fertiliser for soybeans. The analyses were based on chemical ash characterisation, 31P NMR, X-ray diffraction, sequential phosphorus (P) extraction, P extraction in citric acid and greenhouse pot experiments with soybean plants. Fertilization effects were lower than those of triple-superphosphate and K2SO4 and depended on plant P availability. Calcium-based phosphates dominated in all ashes and determined plant P availability. XRD analyses revealed whitlockite (Ca9M(PO4)7) and CaK2P2O7 in all ashes, while AlPO4 was detected only in an ash with low plant P availability and two undefined P phases and Ca(Na,K)PO4 in ashes with high plant P availability. In conclusion, plant P availability was highest in alkali-rich ashes, as observed in ashes from co-processing bagasse with chicken manure. To increase plant P availability in ashes, we recommend co-combustion of the biomass with sodium and potassium rich biofuels.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
700 1 _ |a Jablonowski, Nicolai David
|0 P:(DE-Juel1)129475
|b 1
|u fzj
700 1 _ |a Herzel, Hannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meiller, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Felix
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 5
|u fzj
700 1 _ |a Zang, Joachim Werner
|0 P:(DE-HGF)0
|b 6
700 1 _ |a da Fonseca-Zang, Warde Antonieta
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Poorter, Hendrik
|0 P:(DE-Juel1)129384
|b 8
|u fzj
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 9
700 1 _ |a Schrey, Silvia
|0 P:(DE-Juel1)166424
|b 10
|u fzj
909 C O |o oai:juser.fz-juelich.de:915930
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129475
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166424
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21