f ' CUDA TOOLS FOR PROFILING AND DEBUGGING
MARKUS HRYWNIAK, DEVTECH COMPUTE, APRIL 2022

SESSION OUTLINE

Goals

Use compute-sanitizer to automatically detect correctness issues (invalid memory accesses)
Use cuda-gdb to manually and interactively debug a CUDA program

Use Nsight Systems to learn the basic workflow to optimize performance of GPU programs

Debugging Correctness, then Debugging Performance

Slide 2 NVIDIA.

DEBUGGING CORRECTNESS: BEST PRACTICES

Before you start

Crashes are ,,nice“ - the stacktrace often points to the bug

Prerequisite: Compile flags
While developing, always use —-g -lineinfo
Use —g -G for manual debugging
Specific flags for compilers/lanugages (e.g. gfortran): —-fcheck=bounds

Memory corruption: Out-of-bounds accesses may or may not crash
compute-sanitizer: Automate finding these errrors

Other issues: Manual debugging

cuda-gdb: Command-line debugger, GPU extensions
CUDA LAUNCH BLOCKING=1 forces synchronous kernel launches

NVCC compile flags for debugging

-q Embed symbol info for host code
-lineinfo Generate line correlation info for device code
-G Device debug - slow

Slide 3 NVIDIA.

COMPUTE-SANITIZER

Functional correctness checking suite for GPU

compute-sanitizer is a collection of tools

memcheck (default) tool comparable to

Other tools include
racecheck: shared memory data access hazard detector
initcheck: uninitialized device global memory access detector
synccheck: identify whether a CUDA application is correctly using synchronization primitives

Main usage: Auto-detect invalid GPU code and shortcut debugging effort
Directly pinpoint source code line/addresses, access size

Filtering and other capabilities. Two commonly useful switches:
-—log-file output.log
Separates (potentially verbose) output into separate file

-—kernel-regex kns=some substring
Only checks kernels containing "some_substring”

Slide 4 NVIDIA.

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/
https://www.valgrind.org/docs/manual/mc-manual.html

COMPUTE-SANITIZER

Example launch

Run it: srun --pty compute-sanitizer ./set vector

Abbreviated output:

COMPUTE-SANITIZER

Invalid global write of size 4 bytes

at 0xc0O 1n
/p/home/jusers/hrywniakl/juwels/GPU-Course/taskl/set vector.cu:20:set (int,float*, float)

by thread (0,0,0) in block (0,0,0)

Address 0x2afe49a302000 1s out of bounds

Saved host backtrace up to driver entry polnt at kernel launch time

Target application returned an error
ERROR SUMMARY: 1025 errors

Actual output can be very long, if many GPU threads produce (similar) errors.

Slide 5 NVIDIA.

TASK 1

Use compute-sanitizer to automatically identify an error

Location of code: 2-Tools/exercises/tasks/task1

Steps (see also Instructions.ipynb)
Fix set-vector.cu!
Use compute-sanitizer to locate error in set-vector.cu, and fix it
compute-sanitizer should run without errors!

Build: make

Run: make run / make memcheck

Slide 6 NVIDIA.

CUDA-GDB

Extends GDB for CUDA applications

»,oymbolic Debugger® - leaverage debug symbols to correlate execution issues with original source code

Interactive/manual tool, with useful shortcuts

Textual, like a shell for debugging - Not the easiest to master, but very powerful, and works everywhere

Basic workflow for segfaults
Crashing app invoked via
./my app name my app arg another arg
becomes
cuda-gdb --args ./my app name my app arg another arg
Shows you the debugger shell prompt: (cuda-gdb)
Launch program with "run”
ldentify the segfault - Done ©

Advanced workflow to step through execution, understand program flow, inspect and modify variables,...

Slide 7 NVIDIA.

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html#automatic-error-checking

Most commands have abbreviations

CUDA-GDB CHEAT SHEET

(doubles as a GDB cheat sheet)

continue = cont, break 2 b, info =2 i, backtrace = bt, ...

cuda thread 4 - cu th 4

Use TAB completion to help you remember command names

Use help and apropos to avoid a round-trip to the browser (try: apropos cuda.*api)

—
run

Begin progam execution under debugger

backtrace /

Print call stack (e.g. after an exception)

list

List source code around current location

print <var>

Print contents of <var>, e.g. "print i" to print the loop counter i

set var <var>=<value>

Set value of <var>to <value>, e.g. "set var i=42"

break
break foo.cpp:
break my func

Set breakpoint (suspend execution) on: line 10 in current file
... line 10 in file foo.cpp

... function my_func in any file

set cuda api failures stop

Break on any CUDA API failures (e.g. launch errors)

continue / next / step

Resume execution (after hitting breakpoint) until next: break / line / instruction

info locals

Print all local variables in current scope

info cuda threads

Print current thread configuration

cuda thread 15

Switch focus to thread (here: 15)

Slide 8

NVIDIA.

CUDA-GDB EXAMPLES

Launch

Launching the application inside the debugger - like a shell

S cuda-gdb --args ./gpu-print # The same works on pure CPU using plain gdb.

[...]
For help, type "help".
Type "apropos word" to search for commands related to "word"...

(cuda—-gdb)
Type run to actually launch the program itself

(cuda—-gdb)

Starting program: ./gpu print

‘Detaching after fork from child process 7437]
‘New Thread 0x15554caoc0000 (LWP 7449)
'New Thread 0x15554c85f000 (LWP 7450)
blockIdx.x = 1, threadldx.x = 0, 1 = 0
[o]

(cuda-gdb) # program finished running, debugger waiting for new instructions

Slide 9 NVIDIA.

THE MOST ESSENTIAL COMMAND

In case of segfault, remember the backtrace

If your app crashes or terminates unexpectedly, the debugger can very often tell you the exact location of the issue
Both in CPU and GPU code

S cuda-gdb --args ./gpu-print
(cuda-gdb) run

[...]
CUDA Exception: Warp Illegal Address

The exception was triggered at PC Oxacbc90 (gpu print.cu:19)

Thread 1 "gpu print" received signal CUDA EXCEPTION 14, Warp Illegal Address.

[Switching focus to CUDA kernel O, grid 1, block (0,0,0), thread (0,0,0), device 0,sm O,warp 0,lane 0]
0x0000000000acbcal 1in print test<<<(2,1,1), (32,1,1)>>> () at gpu print.cu:19

19 double x = * (double*)nullptzr;

(cuda-gdb) HIA "

#0 0x0000000000acbcal in print test<<<(2,1,1), (32,1,1)>>> () at gpu print.cu:19

Backtrace tries to print all stack frames (i.e. function calls) with line information up to the current location
Equally useful when manually debugging or using breakpoints

Some errors can corrupt the stack, making the backtrace less useful

Slide 10 NVIDIA.

BREAKPOINTS

Interrupting execution to inspect program state

Retry, but before launch, set a breakpoint that will pause execution

Reminder: You need -G for meaningful kernel debugging

(cuda-gdb) 1 print test # show source of function
[

—
(cuda—-gdb) break 18

Breakpoint 1 at 0x403fe6: file .../exercises/tasks/task2/gpu print.cu, line 20.

(cuda—-gdb) run

Starting program: ./gpu print

]

‘Switching focus to CUDA kernel 0, grid 1, block (0,0,0), thread (0,0,0), device 0,sm 0,warp 0,lane O]
Thread 1 "gpu print" hit , print test<<<(2,1,1),(32,1,1)>>> () at gpu print.cu:13

183 int 1 = 0;

(cuda-gdb) print 1

S1 = <optimized out>

(cuda—-gdb) next

19 printf ("blockIdx.x = %d, threadIdx.x = %d, 1 = %d\n", blockIdx.x, threadIdx.x, 1);
(cuda—-gdb) print 1
S2 =0

(cuda—-gdb) continue # resume execution

Why ,,optimized out“?

Slide 11 NVIDIA.

BREAKPOINTS AND PROGRAM STATE

Changing the course of execution

Breakpoints can be deleted again

(cuda-gdb) # "info breakpoints"”

Num Type Disp Enb Address What

1 breakpoilnt keep vy 0x0000000000acbfol0 1n print test () at gpu print.cu:l8
breakpolnt already hit 1 time

(cuda—-gdb) # "delete 1"

(cuda—-gdb)

No breakpolnts or watchpoints.

Breakpoints can be conditional, also: watchpoints (see help)

Actively change state by setting variables

(cuda-gdb) set var my variable = 11

Actively change control flow by calling functions
(cuda-gdb) call my print func ("debugging message")

Inspect memory and variables. Assume we have const char* s = "my str"
(cuda-gdb) print s # prints "my str"
(cuda-gdb) print s[0]@3 # prints "my "

(cuda-gdb) x/5c s # prints next 5 values following address s interpreted as chars (check help)

Ox4c5410: 109 "m'" 121 'y"'" 95 ' ' 115 's' 1lo 't'

Slide 12 NVIDIA.

GPU-SPECIFICS

New commands in cuda-gdb

GPU-specifics: Setting the focus

(cuda—-gdb)
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel O
* (0,0,0) (0,0,0) (0,0,0) (31, 0,0) 32 0x0000000000acbht90 gpu print.cu 19
(1,0,0) (0,0,0) (1,0,0) (31, 0,0) 32 0x0000000000acbhtft6ol0 gpu print.cu 18
(cuda—-gdb)
thread (0,0,0)
(cuda—-gdb)
‘Switching focus to CUDA kernel 0, grid 1, block (0,0,0), , device 0,sm O,warp 0, lane
10]
19 printf ("blockIdx.x = %d, threadlIdx.x = %d, 1 = %d\n", blockIdx.x, threadIldx.x, 1);
Focus can be set to specific blocks, SMs, devices, ... - help cuda

Hardware and software abstractions (e.g. blocks vs. SMs)

Options: Try (cuda-gdb) set cuda<ENTER> for a list
Two commonly-used options: api_failures and launch_blocking

Slide 13 NVIDIA.

IDE INTEGRATION

Beyond shells and text-based user interfaces

Why use an integrated development environment (IDE)?
= Source code editor with CUDA C/C++ highlighting
= Project / file management with integration of version control
= Build system

= Graphical interface for debugging heterogeneous applications
Eclipse platform: https://developer.nvidia.com/nsight-eclipse-edition/

On Windows: Nsight Visual Studio Edition
= https://developer.nvidia.com/nsight-visual-studio-edition/

Nsight Visual Studio Code Edition
= https://developer.nvidia.com/nsight-visual-studio-code-edition/

File Edit Selection View Go Run Terminal Help

Recommended: htitps://github.com/NVIDIA/nsight-training S

v VARIABLES C- matrixm

syncthreads();

2 ma unroll
o 8 ~ CALL STACK

v (CUDA) PAUSED ON BREAKPOINT r(k = F k < BLOCK SIZE: ++Kk)

MatrixMulCUDA<32> matrixMul.cu 119 {

> matrixMul PAUSED Csub += As[ty][k] * Bs[k][tx];
> matrixMul PAUSED }

> cuda-EvtHandlr PAUSED

> matrixMul PAUSED

syncthreads();
}

Slide 15 < NVIDIA.

https://developer.nvidia.com/nsight-eclipse-edition/
https://developer.nvidia.com/nsight-visual-studio-edition/
https://developer.nvidia.com/nsight-visual-studio-code-edition/
https://github.com/NVIDIA/nsight-training

TASK 2

Change program execution on-the-fly with cuda-gdb

= Location of code: 2-Tools/exercises/tasks/task2

= Steps (see also Instructions.ipynb)

= Let thread 4 from the first block (block 0) print 42 instead of O.
Do not change the source code!
Do use cuda-gdb commands and breakpoints.

= Build and run once to see the standard output:
make run

= Run and debug interactively on a compute node:
l.eval $JSC SUBMIT CMD bash -i
/2 .cuda-gdb --args ...

= Hints:
= Use the cheat sheet: breakpoints, listing source, setting variable values, changing the active cuda thread...

= |If you get stuck, see the solutions directory for the commands to feed into cuda-gdb
= The Makefile has debug-cuda-gdb and debug-cuda-gdb-solution commands you can also try

Slide 16 < NVIDIA.

WRITE DEBUGGABLE SOFTWARE

A case for modularity, and proper test cases

Think about interfaces in your code: Which parts must depend on each other, etc.
Example: BLAS, linear algebra routines

Think about structure and architecture (,,the big picture®)

Don‘t go overboard: ,,| read this book, we need 100% test coverage®, etc.
For many research codes that would be overkill

“Everything should be made as simple as possible, but no simpler.”

Badly structured legacy code slows you down as well, as it resists change
Today‘s code is tomorrow‘s legacy
Strike a balance, avoid full rewrites. Code encapsulates hard-earned bug fixes and knowledge

Representative test cases
Contain the correct science, walk the code paths
But run quickly, best on a single process, should run on a single node
Some (but not all) tests at full scale

Slide 17 NVIDIA.

DEBUGGING PERFORMANCE

Why you must use profilers

Paraphrasing Donald Knuth:

= Don‘t overoptimize, but meta-optimize your own time by using tools to focus on
relevant parts

Do not trust your gut instinct - very often very misleading 4. Deploy 1. Assess
= Easy to waste a lot of time chasing the "perceived"” issue and Test ’

Getting the same information, you end up reimplementing your own profiler

lterative workflow

Different kinds of measurement tools, different tradeoffs ‘ ’

= |Instrumenting/Sampling
= Profiling/Tracing
= multi-process, single-process, kernel-level

3. Optimize 2. Parallelize

$

Focus on GPU and system-level: Nsight Systems Build Knowledge
= Continue with kernel analysis in Nsight Compute (tomorrow)

Slide 18 < NVIDIA.

http://wiki.c2.com/?PrematureOptimization

THE NSIGHT SUITE COMPONENTS

How the pieces fit together

= Nsight Systems: Coarse-grained, whole-application

Start here

Q- Nsight Compute: Fine-grained, kernel-level

= NVTX: Support and structure across tools

Recheck overall

= Main purpose: Performance optimization Recheck overall
workload behavior

. workload behawvior
= But at their core, advanced measurement tools

Dive into top
CUDA kernels

Dive into graphics
frames

\/

Finished if
performance
satisfactory

Slide 19 < NVIDIA.

INTERLUDE - MAXIMUM ACHIEVABLE SPEEDUP

Amdahl‘s law

Amdahl‘s law states overall speedup s given the parallel fraction p of code and number of processes N

1 - 1

§ — —m8M8M S
_ P 1-—

1 p+N p

Using 1 to 4 processes, total runtime

Limited by serial fraction, even for N — oo

Example for p = 30% N=1
Generally applicable on any level
&8 Ao valdiorpermethod speedups N=2
N=3

0 2 4 6 8 10 12
M Serial part M Parallel part

Slide 20 < NVIDIA.

NSIGHT SYSTEMS GUI

Main timeline view, Events View

‘} NVIDIA Nsight Systems 2022.2.1

File View Tools Help

report1.gdrep

= Timeline View v

0s + 90ms

r CPU (80)

+400ms

¥ CUDA HW (0000:5D:00.0 - Tesla V100-5XM2

¥ 100.0% Context 1
¥ 100.0% Kernels
¥ 100.0% scale
100.0% scale(float, float*, float®, int)
b (0.0% Unified memory
* Threads {7)

~ v [28282] scale_vector um ~

05 runtime libraries

+410ms +420ms +430ms

El 1x
+440ms +450ms

/M 4 warnings, 15 messages
+460ms -

Iscaleqfioat, f1...

Iscale(fioat, fl...

scale(float, fl...

sem_timedwait |

CUDA AP
Profiler overhead
£ thraade hiddn ——
4
Events View v
4 Name
1 » cudaMallocManaged
a8 » cudaMallocManaged
12 sCale vector um!main
13 sCale vector um!main
14 sCale vector_um!main
15 sCale vector_um!main
16 cCale vector_um!main
17 cCale vector_um!main
18 sCale vector_um!main
19 sCale vector_um!main
20 cscale vector_um!main
21 cscale vector_um!main
22 ccale vector um!main

Start
0,178344s

0,423194s
0,424096s
04248555
04252825
0,425874s
0,426081s
0,426279s
0,426584s
0,426996s
0,427374s
0,427951s
0,428157s

Duration

244 249 ms

35,757 ps

TID
28282

26282
26282
26282
26282
26282
28282
28282
28282
28282
28282
28282
28282

Mame

« || Description:

[CUDA profiling data flush overhead

w

Slide 21 < NVIDIA.

GPU ,,Speed of Light Throughput*
= SOL = theoretical peak

,,Breakdown® tables
= DRAM: Cycles Active

Tooltips

Rules point to next steps

€ nviDla

File Connection
o Connect

spmyv_v100_21.5_0.ncu-rep

NSIGHT COMPUTE GUI

First steps in kernel analysis - Understanding the initial limiter

Msight Compute

Debug Profile Tools Window Help

B

L

| o = S =

ﬂ_} spmyv_y100_21.5_sol.ncu-rep X ﬂ_} spmv_sol.ncu-rep X Untitled 1* X

Baselines B=

Page: | Details = | Launch: (0- 345-main_41_gpu » | | |*| | Clear Baselines |*| | Apply Rules
Launch Time Cycles Regs GPU
[l Current 545 - main_41_gpu (63443, 1, 1)x(128,1,1) 7,75 msecond 10.176.310 80

& The report contains imported source files.

» GPU Speed Of Light Throughput

Cccupancy Calculator

SM Frequency

CC Process
0 - Tesla V100-3XM2-16GE 1,31 cycle/nsecond 7.0

[19559] spmv

All

Copy as Image |~

@2 0 0

> O

High-level overview of the throughput for compute and memaory resources of the GPL. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the
throughput for each individual sub-metric of Compute and hMemory to clearly identify the highest contributor. High-level overview of the utilization for compute and memaory resources of the GPL presented as a roofline chart.

Compute (SM) Throughput [%]

remor

v Throughput [%]

L1/TEX Cache Throughput [%]
L2 Cache Throughput [%]
DRAM Throughput [%]

@ High Throughput

3,11
9237
32,76
31,70
9237

Duration [msecond]

Elapsed Cycles [cycle]

SM Active Cycles [cycle]

SM Frequency [cycle/nsecond]
DRAM Frequency [cycle/usecond]

.73
10.176.310
10.160.459,39
1,31

878,26

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, waork will likely need to be shifted from the most utilized to
another unit. Start by analyzing workloads in the Memory Workload Analysis section.

© Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and close to 1% of its fp64 peak performance.

Compute (SM) [%] -

=11
S
S
S
S
S
Shi:
Shi:
Shi:
S
S
S
S

vemory 1 |

0,0 10,0

20,0

30,0

Compute Throughput Breakdown

Mio2rf Writeback Active [%]
Inst Executed Pipe Lsu [%]
Issue Active [%]

Inst Executed [%]

Mio Inst Issued [%]

Pipe Fpo4 Cycles Active [%]
Pipe Shared Cycles Active [%]
Pipe Alu Cycles Active [%]
Pipe Fma Cycles Active [%]
Inst Executed Pipe Chu Pred On Any [%]
Inst Executed Pipe Adu [%]
Mio Pq Read Cycles Active [%]
Mio Pg Write Cycles Active [%]

IDC: Request Cycles Active [%]

sM
sM
sM
sM
SM

- Inst Executed Pipe Fpl6 [%]

- Inst Executed Pipe Ipa [%]

- Inst Executed Pipe Tex [%]

- Inst Executed Pipe Xu [%]

- Pipe Tensor Cycles Active [%]

GPU Throughput

40,0

20,0 50,0

Speed Of Light (SOL) [%]

3,11
2,74
1,64
1,84
1,38
0,64
064
0,78
0,67
0,23
0,06
0,06
0,06

u

o o O a a a

Memory Throughput Breakdown

DRAM: Cycles Active [%]

DRAM: Dram Sectors [%]
L2:
L1:
L1:
L2:
L2:
L2:
L2:
L1:
L1:
L2:
L1:
L1:
L1:
L1:
L1:
L1:
L1:
L2:
L2:

70,0

80,0

90,0

100,0

0237

oy, L |

D Sectors Fill Device [%]
Data Pipe Lsu Wavefronts [%
Lsu Writeback Active [%]

dram__cycles_active.avg.pct_of_peak_sustained_elapsed
of cycles where DRAM was active

dram: Device (main) memory, where the GPUs global and local memory resides.

T Sectors [%]

Lts2xbar Cycles Active [%]
Xbar2lts Cycles Active [%]

T Tag Requests [%]

M Xbar2l1tex Read Sectors [%]

M L1tex2xbar Req Cycles Active [%]
D Sectors [%]

Lsuin Requests [%]

Data Bank Writes [%]

Data Bank Reads [%]

F Wavefronts [%]

Texin Sm2tex Req Cycles Active [%]
Data Pipe Tex Wavefronts [%]

Tex Writeback Active [%]

D Atomic Input Cycles Active [%]

D Sectors Fill Sysmem [%]

24 56
23,90
21,23
20,96
18,25
16,38
14,23
274
234
2,19
0,00
0,00
0

0
0
0

Slide 22 < NVIDIA.

WHERE SHOULD | START PROFILING?

And which tool to use?

Always tradeoff between slightly conflicting goals +

report1.qdrep

= Timeline View Y

0s v 390ms

Performance; Maintainability; Effort N S

+420ms +430ms

~ 100.0% Context 1
~ 100.0
~ 100.
10

Kernels |sra\e(ﬂoat‘ fl..|

cale |sra\e(ﬂoat fl..|

scale(float, float*, float*, int) scale(float, fl..|
» 0.0% Unified memory

~ Threads (7)

Start with a system-level view = Nsight Systems e

sem _timedwait

—_—
4
Events View ~
[] [] [] [] [] []
Name ~
“ Name Start Duration D | Description:
Ensure you understand your timeline, and where the GPU is active/inactive e e T
, 8 » cudaMallocManaged 0,423194s 35,757 s 28282
12 scale_vector_um!main 0,424096s - 28282
13 scale_vector_um!main 0,424835s - 28282
) ° Y °) 14 scale_vector_um!main 0,425282s - 28282
15 scale_vector_um!main 0,425874s - 28282
where initialization happens e
17 scale_vector_um!main 0,426279s - 28282
18 scale_vector_um!main 0,426584s - 28282
19 scale_vector_um!main 0,426996s - 28282
20 scale_vector_um!main 0,427374s - 28282

21 scale_vector_um!main 0,427951s - 28282

how the time-% shifts for different relevant workloads e |

CUDA profiling data flush overhead

=
[] []
([
‘ [] [] [[]
[] ‘ [] [] [] []
[]
-
) *)) °
[] [[] [J [] [J [] [J [[[J [J
I I O p t . . t . . I l d t . l N . I l t C t
g I @ NVIDIA Nsight Compute — [m] x
File Connection Debug Profile Tools Window Help
<) Connect Baselines =
spmv_v100. _0.ncu-rep £b spmy_v100_21.5_sol.ncu-rep X Lb spmv_sol.ncu-rep X Unftitled 1* x
Page: | Details « | Launch: |0- 343-main_41_gpu = || |*| | Clear Baselines |*| | Apply Rules Cccupancy Calculator Copy as Image |~
Launch Time Cycles Regs GPU SM Frequency CC Process @llollo o
. Current 545- main_41_gpu (63443, 1, 1)x(128,1,1) 7,75 msecond 10.176.310 80 0-Tesla V100-SXM2-16GE 1,31 cycle/nsecond 7.0 [19559] spmv
@ The report contains imported source files. =
+ GPU Speed Of Light Throughput All + I
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical maximurm. Breakdowns show the
throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.
Compute (3M) Throughput [%] 3,11 | Duration [msecond] 775
IMemory Throughput [%] 92,37 Elapsed Cycles [cycle] 10.176.310
L1/TEX Cache Throughput [%] 32,76 | SM Active Cycles [cyclg] 10.160.469,39
L2 Cache Throughput [%] 31,70 SM Freguenc’ nsecond] 131
DRAM Throughput [%] 92,37 DRAM Frequenc =/usecond] 878,26
" The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be shifted from the most utilized to
© High Throughput .. iper unit. Start by analyzing workloads in the Memory Workload Analvsis section.
© Roofline Analysis The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and close to 1% of its fp64 peak performance
GPU Throughput
Compute (SM) [%] -
0,0 10,0 200 30,0 40,0 50,0 60,0 70,0 80,0 an,0 1000
Speed Of Light (SOL) [%]
Compute Throughput Breakdown Memory Throughput Breakdown
SM: MioZrf Writeback Active 3an DRAM: Cycles Active [%] 9237
SM: Inst Executed Pipe Lsu [* 2,74 DRAM: Dram Sectors [% - 4
d ctive avg. pct_of_peak_sustained_elapsed
SM: Issue Active [%] 184| 12D Sectors Fill De e
SM: Inst Executed [%] 1,84 L1: Data Pipe Lsu Wavefronts [%]
SM: Mio Inst Issued [%)] 138 L1- Lsu Writeback Act dram: Device (main) memary, where the GPUs global and local memory resides.
S Pipe Fp64 Cycles Acti 0,84 L2: T Sectors [%] 2456
SM: Pipe Shared Cycles A 054 L2: Lts2xbar Cycles Active [%] 2390
SM: Pipe Alu Cycles Acti 078 L2: Xbar2lts Cycles Active [%] 21,23
S Pipe Fma Cycles Active [%] 0,67 L2: T Tag Requests [%] 20,96
SM: Inst Executed Pipe Cbu Pred On Any [%] 0,53 L1: M Xbar2|1tex Read Sectors [%] 18,25
SM: Inst Executed Pipe Adu [%] 0,06 L1: M L1texZxbar Req Cycles Active [%] 16,38
SM: Mio Pq Read Cycles Acti 0,06 L2: D Sectors [%] 1423
SM: Mio Pg Write Cycles Active [%] 0,06 L1: Lsuin Requests [%] 274
IDC: Request Cycles Active [%] 0 L1: Data Bank Writes [%] 234
SM: Inst Executed Pipe Fp16 [%] o L1: Data Bank Reads [%] 2,19
SM: Inst Executed Pipe Ipa [%] 0 L1: F Wavefronts [%] 0,00
SM: Inst Executed Pipe Tex [%)] o L1: Texin Sm2tex Req Cycles Active [%] 0,00
SM: Inst Executed Pipe Xu [3%] 0 L1: Data Pipe Tex W ronts [%] o
S Pipe Tensor Cycles Active [%] 0 L1 0 [%] 0
L2: D Atomic Input Cycles Active [%] 0
LZ: D Sectors Fill Sysmem [%] o

Slide 23

NVIDIA.

SYSTEM-LEVEL PROFILING WITH NSIGHT SYSTEMS

Global timeline view
= CUDA HW: streams, kernels, memory

Different traces, e.g. CUDA, MPI
= correlations APl <-> HW

Stack samples
= bottom-up, top-down for CPU code

GPU metrics

Events View
= Expert Systems

looks at single process (tree)

= correlate multi-process reports into
single timeline

ﬁ;‘ NVIDIA Nsight Systems 2021.4.1

File View Tools Help

Jacobi_metncs_no-nvix.0.nsys-rep

= Timeline View d

r GFU {(0000:03:00.0 - NVIDIA
* CUDA HW (0000:03:00.0 -

» [All Streams] 1

b 61.4% Default stream 7
» 31.8% Stream 13 1
b 6.5% Stream 16

5 streams hidden... —

* Threads (8)

Memcpy DtoD

7 Memcpy DtoH

1s ~ +350ms

= Qi

+950ms 25

+900ms

LT
.
T

Memcopy DioH]

-

Memcpy DioH]

+50ms

/M 2 warnings, 16 messages

+100ms 5

| MPI_Sendrecv [41,692 ... [MPI_S...| M... [MPL_S...| MPI_Sen...|| MPL_... [MPL...|

| MPLS... |

- |V [10300] MPI Rank 0 - 4 Al 1,
MP!
CUDA AP T] con | <
Profiler overhead
v [10367] jacobi - 5 i
b threads hidden... —
q
= « Mame Start Duration TID GPU Context
Memset 1,88258s 3,200 ps GPU O Stream 13

o

1,885655
1,885655

GFU O
GPU O

5024 ps Stream 14

4 864 us Stream 13

w w

T ‘

~ | Descrniption:

Fs

void jacobi_kernel<(int)32,
(int)32=(float *, const float
*, float *, int, int, int, bool)
Beqgins: 1,88259s

Ends: 1,88565s (+3,056 ms)

el e e BT BT e e

Slide 24 <ZnviDIA

NSIGHT SYSTEMS BASIC WORKFLOW

Navigating the timeline and finding interesting areas

ﬁ;‘ NVIDIA Nsight Systems 2021.4.1 — L] it

File View Tools Help

Jacobi_metncs_no-nvix.0.nsys-rep

= Timeline View - QL 1x Ay 2 warnings, 16 messages

» (s 0.5s 15 1,55 25 2,55 35 =

* CPU (96)

+ GPU {(0000:03:00.0 - NVIDIA A1(
+ CUDA HW {(0000:03:00.0 - NVID R
= Threads (8)

v ¢ [10309] MPI Rank O ~

MP [MPL_Init [314,790... (] N
CUDA AP [cudaFree | cudaHostAlloc | cudaHostAlloc e | {][cudaFr... | cudaFreeHost |
Profiler overhead l} [E] .
o 8 o 1 _
v [1036/7] jacobi - im H et
o threads hidden.. = o N o S -] _ _ _ _]]] S _ _] o]]) o
4 4
cvents View
MName
- Name Start Duration GPU Context 4| Description:
l initialize_boundanes(float *, float * float, int, Int, int, 1... = 1,88146s 15,360 ps GPU O Stream 7
2 void jacobi_kernel<(int)32, (int)32>(float *, const floa... | 1,88259s 3,056 ms GPU (O Stream 13
3 void jacobi_kemel<(int)32, (int)32>(float *, const floa... | 1,88574s 3,052 ms GPU O Stream 13
4 void jacobi_kernel<(int)32, (int)32>(float *, const floa... | 1,88884s 3,057 ms GPU O Stream 13
5 void jacobi_kemel<(int)32, (int)32>(float *, const floa... | 1,89193s 3,052 ms GPU 0 Stream 13

L) Slide 25 <ANVIDIA.

LAUNCHING THE PROFILERS

How-to on the JSC systems

* module load GCC Nsight-Systems Nsight-Compute

= Nsight Systems
= nsys (CLI) and nsys-ui (GUI)
= Record timeline:
nsys profile -o scale um baseline ./scale vector um

= Always specify a meaningful output file name. Auto-timestamping: -o $ (date +%Y%m%d $H-%m-%S) my app

= Nsight Compute
= ncu (CLI) and ncu-ui (GUI)

= Record all kernels, or (here) select specific instance:
ncu —-set full -k scale -s 0 -c¢c 1 -f -0 scale kernel baseline ./scale vector um
= Nsight Systems can help generate the -s/-c arguments:

v CUDA (Tesla V100-SXM2-16GB)

v 80.0% Context 1

v 100.0% Kernels

Analyze the selected kernel with NVIDIA Nsight Compute

v 100.0% scale

Copy ToolTip

100.0% scale(float, float*, 1

(-!"\If'\\f rlll"l"!'\l"\'l' T:mr\

Slide 26 < NVIDIA.

TASK 3

Analyze and profile scale vector um

Location of code: 2-Tools/exercises/tasks/task3

See Instructions.ipynb

Use the command line tools to gather a profile
Then use the GUI to view it: X-Forwarding, or Xpra (described in the .ipynb)

Objective: Get to know the tools and basic workflow. Check the .ipynb and the Makefile:
Main Goal: Use Nsight Systems to write scale_vector_um’s timeline to file and open the result in the GUI

Try to determine:
Kernel runtime
CUDA API operations and their duration
Optional Goal: Use Nsight Compute to profile a specific kernel on the command line, then write the output to a file and open it in the GUI

What are the limiters of the kernel?

Slide 27 NVIDIA.

A FIRST (I)NSIGHT

Recording with the CLI

Use the command line
srun nsys profile --trace=cuda,nvtx,mpli —--output=my report.$g{SLURM PROCID} ./jacobi -niter 10

Inspect results: Open the report file in the GUI

Also possible to get details on command line
Either add --stats to profile command line, or: nsys stats --help

Runs set of reports on command line, customizable (sqlite +):
Useful to check validity of profile, identify important kernels

Running [.../reports/ jacobl metrics more-nvtx.0O.sqglite]...

Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns)

306750359 20 1837518.0 18384066.5 0622945 3055044 1245121.7\ void jacobi kernel
228106 % 11408.0 11408.0 7520 15290 5498.5 \1nitialize boundaries

Slide 28 NVIDIA

ADDING SOME COLOR

Code annotation with NVTX

25 ~ +350ms +400ms +450ms +500ms +550ms +600ms +650ms + 7/00ms

Same section of timeline as before . oU 96 =

= Events view: Quick navigation » GPU (0000:03:00.0 - NVIDIA

» CUDA HW (0000:03:00.C 1
* Threads (8]

Like manual timing, only less work

' | ¥
Nesting v |V [17825] MPIRank 0 ~ & & .
: : : MPI_Sendrec...| MPI_Sendrecy [63,695 ms] |MPI_Send 5344 . [.|
Correlation, filtering MP! [MPI_Senarec...| P Sendrecy [63,695 ms] |MP1sendrecy [55344 .| | -
MNVTX single_gpu [93,348 ms]
CuDA AP S R (08 . [crerverrinde

Profiler overhead

v [17878] jacobi ~

o threads hidden... —

cvents View bl

MName v

« Name Start Duration TID Category + | Description:

» I Init 0,17077s 2,490 s 17825 it 000

Beqgins: 2,66035s
Ends: 2,66127s (+917,263 ps)
Thread: 17825

v I lacobi solve Highlight Selected on Timeline

Show Current on Timeline

| kernel | CoPy>elected ooesd52 1S 17825
] mp 2,66103s 105,391 pis 17825
I norm 2,00114s 128,150 ps 17825
v []it_00" 266127 751,182 s 17825

Slide 29 < NVIDIA.

ADDING NVTX

Simple range-based API

" #include "nvtx3/nvToolsExt.h"
= NVTX v3 is header-only, needs just —1d1

int main(int argc, char** argv) {

= Fortran: NVHPC compilers include module PUSH_RANGE("rr\a?n", 9)
PUSH RANGE("init", 1)

do initialization();

= Just use nvtx and —lnvhpcwrapnvtx

= Other compilers: See blog posts linked below POP RANGE
= Definitely: Include PUSH/POP macros (see links below) [e ¥/
| | PUSH RANGE ("computation", 2)
PUSH RANGE (name, color 1dx) jacobi kernel<<</* ... */, compute stream>>>(...);

= Sprinkle them strategically through code cudasStreamsynchronize(compute_stream);
. Use hierarchically: Nest POP_RANGE
S€ Nnierarcnicaily: Nest ranges /* o */
= Not shown: Advanced usage (domains, ...) POP RANGE

= Similar range-based annotations exist for other tools
= e.g. SCOREP_USER_REGION_BEGIN

https://github.com/NVIDIA/NVTX

nttps://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
nttps://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

Slide 30 < NVIDIA.

https://docs.nvidia.com/hpc-sdk/compilers/fortran-cuda-interfaces/index.html#cfnvtx-runtime
https://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-6.0/html/group__SCOREP__User.html#gaab4b3ccc2b169320c1d3bf7fe19165f9
https://github.com/NVIDIA/NVTX
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

NSIGHT SYSTEMS WORKFLOW WITH NVTX

Repeating the analysis

'ﬁ; NVIDIA Nsight Systems 2021.4.1 — L] ot

File View Tools Help

Jacobi_metncs_more-nvb.0.nsys-rep

= Timeline View - &y U /v 2 warnings, 16 messages
= 0,55 15 1,55 25 255 35 3,55 4~
» CPU (96)

P GPU {0000:02:00.0 - NVIDIA
» CUDA HW (0000:03:00.0 - ©
* Threads (8)

~ |V [17825] MPI Rank 0 ~ i : 'Eg Eiiiéiiim
NP
NVTX
CUDA API [cudaFree [cudabiostlioc. | cudatostalioe | (@] -] | |cudaFre..| cudaFreeH..
Profiler overhead
V| [17878] jacobi -] Ei E .
& threads hidden... — . _ C f e ekl e ee me 4w s e oo e e e aae wm e i e e 4 e oo e -
4 b
Events View >
Name s .
Description:
Right-click a timeline row and select "Show in Events View" to see events here
-

Slide 31 < NVIDIA.

GPU METRICS IN NSIGHT SYSTEMS

...and other traces you can activate

Write @ Ox71

¥ 100.0% Memory
43.3% HtoD transfer

11

56.7% DtoH transfer
* Threads (7)

. . . WERd 578,108ms +679ms +6380ms +864ms +865ms
Valuable low-overhead insight into HW usage: o mﬂgm:mtm_mm_;m,
= SM instructions v GPU Metrics [10 kHz] —
= DRAM Bandwidth, PCle Bandwith (GPUDirect) GPC Clock Frequency
5¥S Clock Frequency
Also: Memory usage, Page Faults (higher overhead) GR Active S - 'R
= CUDA Programming guide: Unified Memory sM Active
Programming Q_sM Instructions
Can save kernel-level profiling effort! » SM Warp Occupancy B
Nsys profl}e . (DFMM Eanc:lwid@ (>
-—gpu-metrics-device=0 S
-—-cuda-memory-usage=true v CUDA HW (0000:07:00.0 - A100 ——
——cuda—-um-cpu-page—faults=true v 7095 Comtert 1
“-eudatun-gpu-page-faults=true ./aPP o> | e _
- 1000% Kenes ooy ¢ o e |
¥ 20.8% Unified memory m Usage: 512,00 MiB
T [Write @ Ox7ro2dcl...|
< GPFUPage Faults >
-]

* v [1225233] transpose -

OS runtime libraries

~ lcucapevicesyn..

CLIDA AFI

Slide 32 < NVIDIA

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-programming-hd

OTHER PROFILERS

= Performance counters available via CUPTI (CUDA Profiling Tools Interface)
= Build your own profiler (integration): https://docs.nvidia.com/cupti/index.html

= Score-P: Measurement infrastracture, can record CPU/GPU 4, EE—
= Cube: Display hierarchical info collected via Score-P Absolute i
= Vampir: Analyze application traces, discover MPI issues "7 &1 0.00 Comptetion Stali

... and many more

Large-scale MPI profiling, custom tooling, and other uses

B4458F3A-CCB5-4ABB-A4CA-OB1CB4BBF94E/cpi_der_full.cubex

ﬁ Absolute

Ll Flat view

Absolute

| systemtree [JEIEGE

7.67e10 Stall due to BR or CR

@ 1.02e11 Stall due to Fixed-Point

8.38e10 Stall due to Vector/Scalar

[1 0.00 Stall due to Load/Store

v 6.38e8 Stall due to Dcache Miss
v [0.00 Stall due to L2/L3 Hit

0.
[]
» [] 0.00 Stall due to BR or CR
>
>
>
4

3.15e8 LZ/L3 hit with conflict

v 1.41ed4 main

v 9.27e5 MAIN__
1.07e7 mpi_setup_
1.29e4 MPI_Bcast
2.40ed4 env_setup_
56.00 zone_setup_
1.62ed map_zones_
567.00 zone_starts_
432.00 set_constants_
7.15e7 initialize_

v

1.57e10 L2/L3 hit with no conflict 2 1.96e7 exact_rhs_

v [] 0.00 Stall due to L3 Miss 3778.00 timer_clear_
3.15e7 Stall due to On-chip L2/L3 = 9.16e7 exch_gbc_
5.48e8 Stall due to On-chip Memory v 4.1e6 adi_

6.64e6 Stall due to Off-chip L2/L3/Mem
5.84e7 Stall due to Off-node Memary

v [0.00 Stall due to LSU Reject

5.29e7 Reject due to Load-Hit
5.79e8 Reject due to ERAT Miss
7.09e8 Reject due to LMQ Full
1.11e9 Reject due to Reject (other)

[2.30e11 Stall due to Store Finish
[1.35e11 Stall due to Load Finish

5.65e10 Stall due to Store Forward
1.22e10 Stall due to Load/Store (other)
3.96e7 Stall due to Next-to-Complete Flush

8.45e9 Stall due to other reasons
[0 1.96e11 Waiting to Complete
I+ 3.20e10 Thread Blocked
» [E 1.11e11 Completion Table Empty
[3.65e11 Completion Cycles

3.15e8 compute_rhs_
[5.09e9 x_solve_
[5.86e9 vy _solve_
[4.15e9 z_solve_
2.40e7 add_
6377.00 MPI_Barrier
4772.00 timer_start_
1799.00 timer_stop_
251.00 timer_read_
1.99e7 verify_
3810.00 MPI_Reduce
2.40e4d print_results_
8220.00 MP|_Finalize

B))] v v v v o DD

v [- machine Linux
v [- node jupp00

v [] - MPI Rank O
7.81e8 Master thread
1.29e8 OMP thread 1
2.89e8 OMP thread 2
1.61e8 OMP thread 3

» O 1.22e9 MPI Rank 1

» O 1.31e9 MPI Rank 2

» O 1.20e9 MPI Rank 3

All (16 elements) ﬁ

0.00 1.57e10 (1.10%)

1.43e12| |0.00 5.09e9 (32.51%) 1.57e10

0.00 1.57e10

Selected "x_solve "

Slide 33 < NVIDIA

https://docs.nvidia.com/cupti/index.html

SUMMARY

= Overview of GPU tools
= Debugging with compute-sanitizer and cuda-gdb
= Whole-program optimization with Nsight Systems
= |ndividual kernels with Nsight Compute

= Profiler usage a ,,must® for performance optimization
= ...puts the P in HPC

= Workflow is equally important
= |Increase GPU utilization (,,fill whitespace®)
= Focus on top kernels, find their limiters, fix them
* Implement and repeat

Questions?

Slide 34 < NVIDIA

mailto:mhrywniak@nvidia.com

FURTHER MATERIAL

Recent VI-HPS workshop: Talks from the developers of Nsight Systems and Nsight Compute

GTC on-demand talks
= My talk from 2020 (on V100): What the Profiler is Telling You
= CUDA is Evolving, and the Latest Developer Tools are Adapting to Keep Up
= Tuning GPU Network and Memory Usage in Apache Spark

Documentation for cuda-gdb, compute-sanitizer, Nsight Systems and Nsight Compute

= |n particular, the Kernel Profiling guide (installed with Nsight Compute, or online):
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

GTC labs from Nsight teams: https://github.com/NVIDIA/nsight-training

GPU bootcamp material, e.g., https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/multi_gpu_nways

Slide 35 < NVIDIA

W\

https://www.vi-hps.org/cms/upload/material/tw41/Nsight_Systems.pdf
https://www.vi-hps.org/cms/upload/material/tw41/Nsight_Compute.pdf
https://developer.nvidia.com/gtc/2020/video/s22141
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31747
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://github.com/NVIDIA/nsight-training
https://github.com/gpuhackathons-org/gpubootcamp/tree/master/hpc/multi_gpu_nways

