
GPU PROGRAMMING WITH CUDA
Streams and Events
25. – 29. April 2022 Kaveh Haghighi Mood, Jochen Kreutz JSC

Member of the Helmholtz Association

OVERVIEW

Manual memory management
Pinned (pagelocked) host memory
Asynchronous and concurrent memory copies
Cuda Streams

Default stream and cudaStreamNonBlocking flag

Cuda Events

Member of the Helmholtz Association 25. – 29. April 2022 Slide 1 19

GETTING DATA IN AND OUT

GPU has separate memory, common workflow for manual data transfers:
Allocate memory on device
Transfer data from host to device
Run your kernels
Transfer data from device to host
Free device memory

Member of the Helmholtz Association 25. – 29. April 2022 Slide 2 19

GETTING DATA IN AND OUT

allocate device memory

cudaMalloc (void** pointer, size_t nbytes)

Example

// Allocate a vector of 2048 floats on device

float* a_gpu;

int n = 2048;

cudaMalloc (&a_gpu, n * sizeof (float));

Member of the Helmholtz Association 25. – 29. April 2022 Slide 3 19

GETTING DATA IN AND OUT
Copy from host to device

copy data from host to device memory

cudaMemcpy (void* dst, void* src, size_t nbytes,

enum cudaMemcpyKind direction)

Example

// Copy vector a of 2048 floats to a_gpu on device

cudaMemcpy (a_gpu, a, 2048 * sizeof (float), cudaMemcpyHostToDevice);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 4 19

GETTING DATA IN AND OUT
Copy from device to host

copy data from device to host memory

cudaMemcpy (void* dst, void* src, size_t nbytes,

enum cudaMemcpyKind direction)

Example

// Copy device vector a_gpu of 2048 floats to a on host

cudaMemcpy (a, a_gpu, 2048 * sizeof (float), cudaMemcpyDeviceToHost);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 5 19

GETTING DATA IN AND OUT
Manual data management

Allocate memory on device

cudaMalloc (void** pointer, size_t nbytes)

Transfer data between host and device

cudaMemcpy (void* dst, void* src, size_t nbytes,

enum cudaMemcpyKind direction)

Free device memory

cudaFree (void* pointer)

Member of the Helmholtz Association 25. – 29. April 2022 Slide 6 19

PINNED HOST MEMORY

host memory allocated with malloc is pagable
memory pages associated with the memory can be moved around by the OS kernel,
e.g. to swap space on hard disk

transfers to and from the GPU memory need to go over PCIe
PCIe transfers are handled by DMA engines on the GPU and work independently of
the CPU / OS kernel
if OS kernel moves pages involved in such a DMA transfer the wrong data will be
moved
pinning memory pages inhibits the OS kernel from moving them around and makes
them usable for DMA transfers

Member of the Helmholtz Association 25. – 29. April 2022 Slide 7 19

PINNED HOST MEMORY

GPU memcpy D->H

Host

Time

Host memory allocated with malloc is staged through a pinned memory buffer managed by
the Cuda driver

No asynchronous memory copies are possible (CPU interaction is necessary to drive
the pipeline)
Higher latency and lower bandwidth compared to DMA transfers

Member of the Helmholtz Association 25. – 29. April 2022 Slide 8 19

PINNED HOST MEMORY

GPU memcpy D->H

Host

Time

Using pinned host memory
Enables asynchronous memory copies
Lowers latency and increases bandwidth

Member of the Helmholtz Association 25. – 29. April 2022 Slide 9 19

PINNED HOST MEMORY
How to use

Using POSIX functions like mlock is not sufficient, because the Cuda driver needs to
know that the memory is pinned
Two ways to get pinned host memory

Using cudaMallocHost / cudaFreeHost to allocate pinned memory
Using cudaHostRegister / cudaHostUnregister to pin memory after allocation

cudaMemcpy makes automatic use of it
cudaMemcpyAsync can be used to issue asynchronous memory copies

Member of the Helmholtz Association 25. – 29. April 2022 Slide 10 19

PINNED HOST MEMORY
How to use

Using POSIX functions like mlock is not sufficient, because the Cuda driver needs to
know that the memory is pinned
Two ways to get pinned host memory

Using cudaMallocHost / cudaFreeHost to allocate pinned memory
Using cudaHostRegister / cudaHostUnregister to pin memory after allocation

cudaMemcpy makes automatic use of it
cudaMemcpyAsync can be used to issue asynchronous memory copies

Member of the Helmholtz Association 25. – 29. April 2022 Slide 10 19

CUDA STREAMS
How to use

Cuda Streams are work queues to express concurrency between different tasks, e.g.
Host to device memory copies
Device to host memory copies
Kernel execution

To overlap different tasks just launch them in different streams
All tasks launched into the same stream are executed in order
Tasks launched into different streams might execute concurrently (depending on
available resoucres: copy engines, compute resources)

Member of the Helmholtz Association 25. – 29. April 2022 Slide 11 19

CUDA STREAMS
How to use

Cuda Streams are work queues to express concurrency between different tasks, e.g.
Host to device memory copies
Device to host memory copies
Kernel execution

To overlap different tasks just launch them in different streams
All tasks launched into the same stream are executed in order
Tasks launched into different streams might execute concurrently (depending on
available resoucres: copy engines, compute resources)

Member of the Helmholtz Association 25. – 29. April 2022 Slide 11 19

CUDA STREAMS
How to use

Create / destroy a stream

cudaStream_t stream;

cudaStreamCreate (&stream);

cudaStreamDestroy (stream);

Launch
my_kernel <<< grid, block, 0, stream >>> (...);

cudaMemcpyAsync (... , stream);

Synchronize

cudaStreamSynchronize (stream);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 12 19

CUDA STREAMS
The default (NULL) stream

Kernel launches are always asynchronous
Which stream is used here ?
my_kernel <<< grid, block >>> (...),

The default (NULL) stream is used

user streams

null stream

Member of the Helmholtz Association 25. – 29. April 2022 Slide 13 19

CUDA STREAMS
The default (NULL) stream

The default (NULL) stream waits for work in all other streams which do not have the
cudaStreamNonBlocking flag set

user streams

null stream

non blocking user stream

User streams with the cudaStreamNonBlocking flag set can execute concurrently to
the default stream

Member of the Helmholtz Association 25. – 29. April 2022 Slide 14 19

CUDA EVENTS

Cuda Events are synchronization markers that can be used to:
Time asynchronous tasks in streams
Allow fine grained synchronization within a stream
Allow inter stream synchronization, e.g. let a stream wait for an event in another
stream

Member of the Helmholtz Association 25. – 29. April 2022 Slide 15 19

CUDA EVENTS
How to use

Create / destroy events
cudaEvent_t event;

cudaEventCreate (&event);

cudaEventDestroy (event);

Record
cudaEventRecord (event, stream);

Query
cudaEventQuery (event);

Synchronize
cudaEventSynchronize (event);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 16 19

CUDA EVENTS
How to use for kernel timing

Example

cudaEventRecord (startEvent, stream);

my_kernel <<< grid, block, 0, stream >>> (...);

cudaEventRecord (endEvent, stream);

//Host can do other work in between

float runtime = 0.0f;

cudaEventSynchronize (endEvent);

cudaEventElapsedTime (&runtime, startEvent, endEvent);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 17 19

USING CUBLAS WITH STREAMS

Example

#include "cublas_v2.h"

...

cublasHandle_t handle;

//Initialize cuBLAS

cublasCreate (&handle);

//Set cuBLAS execution stream

cublasSetStream (handle, stream);

//Call cuBLAS routine, e.g.: SAXPY

cublasSaxpy (handle, n, &alpha, x, 1, y, 1);

...

// Free resources

cublasDestroy (handle);

Member of the Helmholtz Association 25. – 29. April 2022 Slide 18 19

EXERCISE
Asynchronous data transfers using streams

Instructions:
.../exercises/tasks/Instructions.ipynb

task1a: using pinned memory
task1b: asynchronous memcpy using streams
task2: CUBLAS example with timing

Member of the Helmholtz Association 25. – 29. April 2022 Slide 19 19

