

GPU PROGRAMMING WITH CUDA Tiled Matrix Multiplication

25 – 29 April 2022 | Kaveh Haghighi Mood, Jochen Kreutz | JSC

OVERVIEW

- Tiled matrix multiplication algorithm
- Cuda implementation with and without streams
- Using multiple GPUs and streams

MOTIVATION

- use cuBLAS library to get performance out of your GPU
 - easy to use
 - highly optimized
- what about using multiple GPUs within a node?
- what about dealing with huge matrices that won't entirely fit into GPU memory ?

- Split matrices into tiles (similar to block approach introduced with using shared memory)
- Allows for distribution of work onto different streams (and GPUs)
- Use highly optimized CuBLAS routines for block matrix multiplication

Block-wise Matrix Multiplication

Input matrix B

Result matrix C

- Do partial (block-wise) computation using CuBLAS library
- Sum up partial results

- Do partial (block-wise) computation using CuBLAS library
- Sum up partial results

- Do partial (block-wise) computation using CuBLAS library
- Sum up partial results

- Change order of computations and run over all tiles of the result matrix in an inner loop
- Do first set of computations for all tiles in result matrix and then repeat with next tiles of input matrices
- Allows for concurrency in computation of tiles within result matrix C

- Change order of computations and run over all tiles of the result matrix in the inner loop
- Do first computations for all tiles in the result matrix, then proceed to next tiles of input matrices

- Change order of computations and run over all tiles of the result matrix in the inner qool
- Do first computations for all tiles in the result matrix, then proceed to next tiles of input matrices

- Change order of computations and run over all tiles of the result matrix in the inner loop
- Do first computations for all tiles in the result matrix, then proceed to next tiles of input matrices

- Change order of computations and run over all tiles of the result matrix in the inner loop
- Do first computations for all tiles in the result matrix, then proceed to next tiles of input matrices

Implementation

Loop over tiles

```
// loop over inner tile dimension
for ( int iktile = 0; iktile < ntiles; iktile++ ) {
  // loop over row tiles
 for ( int irowtile = 0; irowtile < ntiles; irowtile++ ) {</pre>
    // loop over column tiles
    for ( int icoltile = 0; icoltile < ntiles; icoltile++ ) {</pre>
      . . .
```


Implementation

- Tiled approach allows to operate large matrices that would not entirely fit into GPU memory
- For each step only 3 tiles have to be present on the device
- Use pinned memory for tiles to do asynchronous host to device copies and speed up data transfers
- Set beta to 1 in cublasDgemm call to reuse previous calculated results (sum up partial results)

DGEMM definition

$$C := alpha * A * B + beta * C$$

Implementation

Workflow:

- Init data (set elements of result matrix C to 0)
- Loop over tiles in C and in the input matrices to compute and sum up partial results
 - Read input data (3 tiles) from global matrices (in host memory) to pinned buffers
 - 2 Transfer the three relevant tiles to the device
 - 3 Call cublasDgemm with beta = 1
 - 4 Read back partial results from device to pinned host buffer
 - Write back partial result (1 tile) from pinned host buffer to global result matrix in host memory

Slide 8119

EXERCISE

Tiled Matrix Multiplication with Cuda

Location:

.../exercises/tasks/Instructions.ipynb

Using Streams

- Distribute computation of tiles to different streams
- Use asynchronous data transfers to overlap kernel executions and memory copies
- Each stream will use its own tile buffers ("multi-buffering")
 - Simplifies implementation
 - Redundant data transfers can be hidden (by kernel execution)
- Synchronization is needed

Attention

Two streams should not work on the same tile in C at the same time. Hence, number of streams has to be smaller than number of tiles in C!

Using Streams

Example: 3 streams

- For every tile:
 - H2D data transfer
 - Kernel execution (cublasDgemm)
 - D2H data transfer

EXERCISE

Tiled Matrix Multiplication with Cuda using Streams

Location:

.../exercises/tasks/Instructions.ipynb

Using Streams on multiple GPUs

- Use all GPUs within a node
- Each GPU uses several streams
 - Fill all streams of a GPU first, then move on to next GPU

Using Streams on multiple (e.g. 2) GPUs

MULTI-GPU LIBRARIES

Extensions of CuBLAS library

- The cuBLASXt API of cuBLAS exposes a multi-GPU capable Host interface
 - no restriction on the sizes of the matrices as long as they can fit into the host memory
 - offers the possibility to offload some of the computation to the host CPU
- cuBLASMg provides a state-of-the-art multi-GPU matrix-matrix multiplication
 - Currently a part of the CUDA Math Library Early Access Program

EXERCISE

Tiled Matrix Multiplication with Cuda using Streams on multiple GPUs

Location:

.../exercises/tasks/Instructions.ipynb

