
COOPERATIVE GROUPS
FLEXIBLE GROUPS OF THREADS
29 April 2022 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association



Overview, Outline
At a Glance

Cooperative Groups: Newmodel to work with thread groups
Thread groups are entities, intrinsic function as member functions

Contents
Motivation

Basis
Cooperative Groups

Introduction
Thread Groups Overview
Thread Blocks
Task 1
Tiling Groups

Dynamic Size
Static Size

Coalesced Groups

Binary Partition
Labeled Partition
Larger Groups
Task 2

Warp-Synchronous Programming
Overview
Task 3

Collective Operations
Block Clusters
Conclusions

Member of the Helmholtz Association 29 April 2022 Slide 1 43



Gather Last-Minute Material

Now run

jsc-material-reset-08
jsc-material-reset-09
jsc-material-reset-10
jsc-material-reset-11

Place cursor in box when done:

I’m done!



Gather Last-Minute Material

Now run

jsc-material-reset-08
jsc-material-reset-09
jsc-material-reset-10
jsc-material-reset-11

Place cursor in box when done:

I’m done!



Standard CUDA Threading Model
Before CUDA 9

Many threads, combined into blocks, on a grid; in 3D
Operation: Single Instruction, Multiple Threads (SIMT)
Thread waiting for result of instruction? Use computational
resource with other threads in meantime!
Group of threads execute in lockstep: Warp (currently 32
threads)

Same instructions
Branching possible
Predicates (andmasks)

Sharedmemory: Fast, shared between threads of block
Synchronization between threads of blocks:
__syncthreads() – barrier for all threads of block

Member of the Helmholtz Association 29 April 2022 Slide 3 43



Cooperative Groups
Introduction



NewModel: Cooperative Groups

Motivation to extend classical model
Algorithmic Not all algorithmsmap easily to available synchronization methods;

synchronization should bemore flexible
Design Make groups of threads explicit entities

Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

→ Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

All in namespace cooperative_groups (cooperative_groups.h header)
Following in text: cooperative_groups::func()−→ cg::func()
namespace cg = cooperative_groups;

Member of the Helmholtz Association 29 April 2022 Slide 5 43



NewModel: Cooperative Groups

Motivation to extend classical model
Algorithmic Not all algorithmsmap easily to available synchronization methods;

synchronization should bemore flexible
Design Make groups of threads explicit entities

Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

→ Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

All in namespace cooperative_groups (cooperative_groups.h header)
Following in text: cooperative_groups::func()−→ cg::func()
namespace cg = cooperative_groups;

Member of the Helmholtz Association 29 April 2022 Slide 5 43



Division of Thread Blocks

Start with block of certain size
Divide into smaller sub-groups
Continue diving, if algorithmmakes it necessity
Methods for dynamic or static divisions (tiles)
In each level: thread of group has unique ID (local index
instead of global index)

→ Use functions and collectives on sub-set of all threads

Member of the Helmholtz Association 29 April 2022 Slide 6 43



Cooperative Groups
Thread Groups Overview



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 8 43



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 8 43



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 8 43



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 8 43



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 8 43



CommonMethods of Cooperative Groups

Fundamental type: thread_group
Every CG has following member functions

sync() Synchronize the threads of this group (alternative cg::sync(g))
Before: __syncthreads() for whole block

thread_rank() Get unique ID of current thread in this group (local index)
Before: threadIdx.x for index in block

size() Number of threads in this group
Before: blockDim.x for number of threads in block

is_valid() Group is technically ok

Member of the Helmholtz Association 29 April 2022 Slide 9 43



Cooperative Groups
Thread Blocks



Cooperative Thread Blocks

Easiest entry point to thread groups: cg::this_thread_block()
Additional member functions
thread_index() Thread index within block (3D)
group_index() Block index within grid (3D)

Blocks (and groups) are now concrete entities
→ Design functions to represent this!

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 11 43



Example: Print Rank Function

__device__ void printRank(cg::thread_group g) {
printf("Rank %d\n", g.thread_rank());

}
__global__ void allPrint() {

cg::thread_block b = cg::this_thread_block();

printRank(b);
}
int main() {

allPrint<<<1, 23>>();
}

Member of the Helmholtz Association 29 April 2022 Slide 12 43



Task Base Code: Shared Memory Reduction
Outer skeleton

int * array;
cudaMallocManaged(&array, sizeof(int) * N);

for (int i = 0; i < N; i++)
array[i] = rand() % 1024;

int blocks = 1;
int threads = N;
maxKernel<<<blocks, threads, threads * sizeof(int)>>>(array);

Allocate this much sharedmemory per block

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;
}

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;
}

One value for each thread

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;
}

One value for each thread

Call function with
temp array and

thread-local value

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;
}

One value for each thread

Call function with
temp array and

thread-local value

Save max to array in global memory

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?

? ?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?

? ?

?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Task Base Code: Shared Memory Reduction
Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}
return value;

}

Per loop, halve size of operations

Get max from current thread
and offset thread

Put max value to current lane

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?

? ?

?

Member of the Helmholtz Association 29 April 2022 Slide 13 43



Implementing a Cooperative Groups Kernel
From old to new

Location of code: 08-Cooperative_Groups/exercises/tasks/task1
See Instructions.md for explanations
Follow TODOs to port kernel/device function from traditional CUDA threading model to
new CGmodel
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on Cooperative Groups

TASK 1

Member of the Helmholtz Association 29 April 2022 Slide 14 43

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Cooperative Groups
Tiling Groups



Tiles of Groups
Dynamically-tiled

Divide into smaller groups with cg::tiled_partition()
Will automatically create smaller groups from parent group
Examples

Create groups of size 32 of current block
cg::thread_group tile32 = cg::tiled_partition(cg::this_thread_block(), 32);
Create sub-groups of size 4
cg::thread_group tile4 = cg::tiled_partition(tile32, 4);

Note: Currently, only supported partition sizes are 2, 4, 8, 16, 32

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 16 43



Tiles of Groups
Statically-tiled: thread_block_tile

Second version of function: cg::tiled_partition<>()
Size of tile is template parameter

→ Known at compile time! Optimizations possible!
Returns thread_block_tile object with additional member functions

.shfl(), .shfl_down(), .shfl_up(), .shfl_xor()

.any(), .all(), .ballot(); .match_any(), .match_all()
→ Intrinsic functions to work with threads inside a warp (more later)

Example
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cg::this_thread_block());
cg::thread_block_tile<4> tile4 = cg::tiled_partition<4> (tile32);

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 17 43



Tiles of Groups
Statically-tiled: thread_block_tile

Second version of function: cg::tiled_partition<>()
Size of tile is template parameter

→ Known at compile time! Optimizations possible!
Returns thread_block_tile object with additional member functions

.shfl(), .shfl_down(), .shfl_up(), .shfl_xor()

.any(), .all(), .ballot(); .match_any(), .match_all()
→ Intrinsic functions to work with threads inside a warp (more later)

Example
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cg::this_thread_block());
cg::thread_block_tile<4> tile4 = cg::tiled_partition<4> (tile32);

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 17 43



Cooperative Groups
Coalesced Groups



Coalesced Group

Get group of threads which is not diverged
Threads have same state at point of API call
cg::coalesced_group active_threads = cg::coalesced_threads();

Example
cg::coalesced_group active_threads = cg::coalesced_threads();
if (i < 5) {

cg::coalesced_group if_true_threads = cg::coalesced_threads();
int rank = if_true_threads.thread_rank();
cg::thread_group partition = cg::tiled_partition(if_true_threads, 2);

}

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 19 43



Coalesced Group

Get group of threads which is not diverged
Threads have same state at point of API call
cg::coalesced_group active_threads = cg::coalesced_threads();
Example
cg::coalesced_group active_threads = cg::coalesced_threads();
if (i < 5) {

cg::coalesced_group if_true_threads = cg::coalesced_threads();
int rank = if_true_threads.thread_rank();
cg::thread_group partition = cg::tiled_partition(if_true_threads, 2);

}

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 19 43



Cooperative Groups
Binary Partition



Binary Partition

Get group of coalesced threads for which a condition is either true or false
Threads have same state at point of API call and belong to one of two buckets
cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);
Beta feature, details might change

Example
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
auto subTile = cg::binary_partition(tile32, isEven(array[cta.thread_rank()]) );

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 21 43



Binary Partition

Get group of coalesced threads for which a condition is either true or false
Threads have same state at point of API call and belong to one of two buckets
cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);
Beta feature, details might change
Example
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
auto subTile = cg::binary_partition(tile32, isEven(array[cta.thread_rank()]) );

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 21 43



Cooperative Groups
Labeled Partition



Labeled Partition

Get group of coalesced threads for which a condition is equal
Threads have same state at point of API call and belong to same bucket
Extension of binary partition to general case
cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);
Beta feature, details might change

Example
cg::coalesced_group active = cg::coalesced_threads();
auto labeledGroup = cg::labeled_partition(active, bucket);

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 23 43



Labeled Partition

Get group of coalesced threads for which a condition is equal
Threads have same state at point of API call and belong to same bucket
Extension of binary partition to general case
cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);
Beta feature, details might change
Example
cg::coalesced_group active = cg::coalesced_threads();
auto labeledGroup = cg::labeled_partition(active, bucket);

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 23 43



Cooperative Groups
Larger Groups



Grid Group

Grid of blocks can also be entity now
Synchronize across all blocks:
cg::grid_group grid = cg::this_grid();
grid.sync();
Condition

1 Blocks must be co-resident on device (Occupancy Calculator)
2 Kernel must be launched with Cooperative Launch API

cudaLaunchCooperativeKernel() instead of <<<,>>> syntax

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 25 43



Multi-Grid Group

Group of blocks across multiple devices
Synchronize blocks across devices:
cg::multi_grid_group multi_grid = cg::this_multi_grid();
multi_grid.sync();
Condition

1 Kernel must be launched with Cooperative Launch API
cudaLaunchCooperativeKernel() instead of <<<,>>> syntax

2 Supported by architecture

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Member of the Helmholtz Association 29 April 2022 Slide 26 43



Cooperative Groups with Tiled Partitions
Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2
See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on Cooperative Groups

TASK 2

Member of the Helmholtz Association 29 April 2022 Slide 27 43

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Cooperative Groups with Tiled Partitions
Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2
See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on Cooperative Groups

TASK 2

Member of the Helmholtz Association 29 April 2022 Slide 27 43

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Cooperative Groups with Tiled Partitions
Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2
See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on Cooperative Groups

TASK 2

Aside!

Member of the Helmholtz Association 29 April 2022 Slide 27 43

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

6✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

6✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

x = x+ 1

5
x

x = 6

read

6
x

write

x = x+ 1

6✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

x = x+ 1

5
x

x = 6

read

6
x

write

x = x+ 1x = x+ 1

x = 6

read

6
writ

e

✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

x = x+ 1

5
x

x = 6

read

write

x = x+ 1x = x+ 1

x = 6

read

writ
e6

x

✓

6✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Motivation

Order execution of CUDA threads non-deterministic
No problem, if each thread works on distinct data
element
What, if threads collaborate and share data? Read/Write
to same element?

→ Atomic operations
Safe way to read and write to memory position by
different threads
Data in global or sharedmemory
Example: atomicAdd(&array[i], myvalue)

See CUDA Documentation

array[1] = array[1] + myvalue

x = x+ 1

5
x

x = 6

read

write

x = x+ 1x = x+ 1

x = 6

read

writ
e6

x

✓

6✗

Member of the Helmholtz Association 29 April 2022 Slide 28 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions


Aside: Atomic Operations
Examples

First argument to function (always): address of a value to potentially change
Old value of address usually returned
int atomicOp(int * removeVal, int myVal)

Examples
atomicAdd(int* address, int val) Add val to the value at address
atomicExch(int* address, int val) Store val at address location; return old value
atomicMin(int* address, int val) Store the minimum of val and the value at

address at address location; return old value
atomicCAS(int* address, int compare, int val) The value at address is

compared to compare. If true, val is stored at address; if false, the old
value at address is stored. The old value at address is returned. Basic
function: Compare And Swap

Member of the Helmholtz Association 29 April 2022 Slide 29 43



Aside: Atomic Operations
Examples

First argument to function (always): address of a value to potentially change
Old value of address usually returned
int atomicOp(int * removeVal, int myVal)
Examples
atomicAdd(int* address, int val) Add val to the value at address
atomicExch(int* address, int val) Store val at address location; return old value
atomicMin(int* address, int val) Store the minimum of val and the value at

address at address location; return old value
atomicCAS(int* address, int compare, int val) The value at address is

compared to compare. If true, val is stored at address; if false, the old
value at address is stored. The old value at address is returned. Basic
function: Compare And Swap

Member of the Helmholtz Association 29 April 2022 Slide 29 43



Cooperative Groups with Tiled Partitions
Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2
See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on Cooperative Groups

TASK 2

Member of the Helmholtz Association 29 April 2022 Slide 30 43

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Warp-Synchronous Programming



Warp-Level Intrinsics

Smallest set of executed threads: Warp
Warp: 32 threads executed in SIMT/SIMD fashion
Exchange data between threads of warp

Global memory: Slow
Sharedmemory: Faster
Directly (registers): Even faster

Safe method access without race conditions
Global/sharedmemory: Atomic operations
Registers: Warp-aggregated Atomic operations

Member of the Helmholtz Association 29 April 2022 Slide 32 43



Warp Intrinsics Overview
shfl(int lane) Copy data from a target warp lane; also: other flavors (next slide)

all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)

any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return a bit mask which has 1s set for all thread for which predicate

evaluates to non-zero
match_any(T value) Return a bit mask of threads which have same value of value as current

thread; also: match_all(T value)

Available as global device functions, with additional selectionmask as first element (as
__shufl_sync() etc.)
Available asmember functions of a cg::tiled_partition group (as g.shfl() etc.)
Intrinsics automatically synchronize after operation – new since CUDA 9
Value can only be retrieved if targeted lane also invokes intrinsic
Per clock cycle: 32 shuffle instructions per SM→ very fast!

Member of the Helmholtz Association 29 April 2022 Slide 33 43



Warp Intrinsics Overview
shfl(int lane) Copy data from a target warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all

threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero

ballot(int pred) Return a bit mask which has 1s set for all thread for which predicate
evaluates to non-zero

match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

Available as global device functions, with additional selectionmask as first element (as
__shufl_sync() etc.)
Available asmember functions of a cg::tiled_partition group (as g.shfl() etc.)
Intrinsics automatically synchronize after operation – new since CUDA 9
Value can only be retrieved if targeted lane also invokes intrinsic
Per clock cycle: 32 shuffle instructions per SM→ very fast!

Member of the Helmholtz Association 29 April 2022 Slide 33 43



Warp Intrinsics Overview
shfl(int lane) Copy data from a target warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all

threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero

ballot(int pred) Return a bit mask which has 1s set for all thread for which predicate
evaluates to non-zero

match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

Available as global device functions, with additional selectionmask as first element (as
__shufl_sync() etc.)
Available asmember functions of a cg::tiled_partition group (as g.shfl() etc.)
Intrinsics automatically synchronize after operation – new since CUDA 9
Value can only be retrieved if targeted lane also invokes intrinsic
Per clock cycle: 32 shuffle instructions per SM→ very fast!

Member of the Helmholtz Association 29 April 2022 Slide 33 43



Warp Intrinsics Overview
shfl(int lane) Copy data from a target warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all

threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero

ballot(int pred) Return a bit mask which has 1s set for all thread for which predicate
evaluates to non-zero

match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

Available as global device functions, with additional selectionmask as first element (as
__shufl_sync() etc.)
Available asmember functions of a cg::tiled_partition group (as g.shfl() etc.)
Intrinsics automatically synchronize after operation – new since CUDA 9
Value can only be retrieved if targeted lane also invokes intrinsic
Per clock cycle: 32 shuffle instructions per SM→ very fast!

Member of the Helmholtz Association 29 April 2022 Slide 33 43



Warp Intrinsic Example
Everyday I’m Shuffeling

shfl(): Copy data from target warp lane
Different flavors

shfl() Copy data fromwarp lane with ID directly
shfl_up() Copy data from relative warp lane with lower ID (shuffle upstream)

shfl_down() Copy data from relative warp lane with higher ID (shuffle downstream)
shfl_xor() Copy data from relative warp lane with ID as calculated by a bitwise XOR

Example: shfl_down(value, N)with N = 16, 8, …

Member of the Helmholtz Association 29 April 2022 Slide 34 43



Transform Kernel to Warp-Level Reduction without Shared
Memory
Expert level 11

Location of code: 08-Cooperative_Groups/exercises/tasks/task3
See Instructions.md for explanations
Follow TODOs to modify maxKernel() such that it uses warp-level atomic operations
(and no sharedmemory)
Compile with make, submit to batch systemwith make run
See also CUDA C programming guide for details on warp-level functions

TASK 3

Member of the Helmholtz Association 29 April 2022 Slide 35 43

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions


Collective Operations



Collective Operations

In-group programming (ideally: warp-level programming) can get last bits of
performance; but quite advanced
Help: Collective operations on thread groups (new and slightly less advanced)

cg::sync() Synchronize threads in group
cg::memcpy_async() Copy from global to sharedmemory in group, non-blocking;

also: cg::wait
cg::reduce() Reduction operation in group; hardware-accelerated operators:

plus(), less(), greater(), bit_and(), bit_xor(), bit_or()
cg::inclusive_scan() Scan operation in group (also: cg::exclusive_scan())

Member of the Helmholtz Association 29 April 2022 Slide 37 43



Cooperative Reduce Collective Example

__shared__ int reduction_s[BLOCKSIZE];
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

const int tid = cta.thread_rank();
int value = A[tid];
reduction_s[tid] = cg::reduce(tile, value, cg::plus<int>());
// reduction_s contains tile-sum at all positions associated to tile
cg::sync(cta);
// Still to do: sum partial tile sums

Member of the Helmholtz Association 29 April 2022 Slide 38 43



Block Clusters



Thread Group Landscape

Thread Group

Thread Block

Thread Block
Tile Coalesced Group

Grid Group

Multi-Grid Group

Thread Block Cluster

Member of the Helmholtz Association 29 April 2022 Slide 40 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Grids

Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG
Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids

Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG
Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids
Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG

Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids
Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG

Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids
Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG

Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids
Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG
Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



New Thread Hierarchy Kid
New feature to be available in next-gen H100 GPU
Not many details known yet
Extend hierarchy:
Threads→ Thread Blocks→ Thread Block Clusters→ Grids
Exposes the GPC (GPU Processing Cluster) hardware to software – only through CG
Enables collaboration of some SMs of GPC; access sharedmemory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41 43



Conclusions



Conclusions

CG alternative model to create groups
Groups are entities, have member functions
Synchronizing is important (not mentioned before: __syncwarps())
Warp-level functions easily accessible from groups
CG are quite new, let’s see how they develop
See also further literature in Appendix

Member of the Helmholtz Association 29 April 2022 Slide 43 43



Conclusions

CG alternative model to create groups
Groups are entities, have member functions
Synchronizing is important (not mentioned before: __syncwarps())
Warp-level functions easily accessible from groups
CG are quite new, let’s see how they develop
See also further literature in Appendix

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 29 April 2022 Slide 43 43

mailto:a.herten@fz-juelich.de


Appendix



Appendix
Further Literature
Glossary
References: Images

Member of the Helmholtz Association 29 April 2022 Slide 2 5



Further Literature

NVIDIA Developer Blog: Cooperative Groups: Flexible CUDA Thread Programming
NVIDIA Developer Blog: Inside Volta: The World’s Most Advanced Data Center GPU
NVIDIA Developer Blog: Using CUDAWarp-Level Primitives
Talk at GPU Technology Conference 2018: Cooperative Groups by Kyrylo Perelygin and
Yuan Lin
Talk: Warp-synchronous programming with Cooperative Groups by Sylvain Collange
Book: CUDA Programming by Shane Cook

Member of the Helmholtz Association 29 April 2022 Slide 3 5

https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-scalable-cuda.pdf
http://www.irisa.fr/alf/downloads/collange/talks/collange_warp_synchronous_gpu17.pdf
https://www.elsevier.com/books/cuda-programming/cook/978-0-12-415933-4


Glossary I
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 42, 43, 45, 46, 48, 49, 51, 52

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 5, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 67, 68, 69, 70, 72

NVIDIA US technology company creating GPUs. 91

CG Cooperative Groups. 7, 8, 16, 36, 53, 54, 55, 64, 86, 87

GPU Graphics Processing Unit. 91

SIMD Single Instruction, Multiple Data. 66
SIMT Single Instruction, Multiple Threads. 5, 66
SM Streaming Multiprocessor. 67, 68, 69, 70

Member of the Helmholtz Association 29 April 2022 Slide 4 5



References: Images, Graphics I

[1] Yuriy Rzhemovskiy. Teenage Penguins. Freely available at Unsplash. URL:
https://unsplash.com/photos/qFxS5FkUSAQ.

Member of the Helmholtz Association 29 April 2022 Slide 5 5

https://unsplash.com/photos/qFxS5FkUSAQ

	Outline
	Motivation
	Basis

	Cooperative Groups
	Introduction
	Thread Groups Overview
	Thread Blocks
	Task 1
	Tiling Groups
	Coalesced Groups
	Binary Partition
	Labeled Partition
	Larger Groups
	Task 2

	Warp-Synchronous Programming
	Overview
	Task 3

	Collective Operations
	Block Clusters
	Conclusions
	Appendix
	Appendix
	Further Literature
	Glossary

	Glossary
	Acronyms
	References: Images

	References


