FLEXIBLE GROUPS OF THREADS

29 April 2022 | Andreas Herten | Forschungszentrum Jiilich

Member of the Helmholtz Association

Forschungszentrum CENTRE

g JULICH | 5 upome

Overview, Outline

At a Glance

= Cooperative Groups: New model to work with thread groups
= Thread groups are entities, intrinsic function as member functions

Contents
Motivation
Basis
Cooperative Groups
Introduction
Thread Groups Overview
Thread Blocks
Task 1
Tiling Groups
Dynamic Size
Static Size

Coalesced Groups

Member of the Helmholtz Association 29 April 2022

Binary Partition
Labeled Partition
Larger Groups
Task 2
Warp-Synchronous Programming
Overview
Task 3
Collective Operations

Block Clusters

Conclusions ‘J JULICH

Slide 1143 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Gather Last-Minute Material

Now run

jsc-material-reset-08
jsc-material-reset-09
jsc-material-reset-10
jsc-material-reset-11

Gather Last-Minute Material

Place cursor in box when done:

Now run

jsc-material-reset-08
jsc-material-reset-09
jsc-material-reset-10
jsc-material-reset-11

Standard CUDA Threading Model

Before CUDA 9

= Many threads, combined into blocks, on a grid; in 3D

= Operation: Single Instruction, Multiple Threads (SIMT)

= Thread waiting for result of instruction? Use computational
resource with other threads in meantime!

= Group of threads execute in lockstep: Warp (currently 32
threads)
= Same instructions
= Branching possible
= Predicates (and masks)

= Shared memory: Fast, shared between threads of block

= Synchronization between threads of blocks:
__syncthreads() - barrier for all threads of block

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 3143 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Cooperative Groups
Introduction

New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 5143 J Forschungszentrum

New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.
= Allin namespace cooperative_groups (cooperative_groups.h header)

= Followingin text: cooperative_groups::func() — cg: : func()
namespace cg = cooperative_groups;

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 5143 J Forschungszentrum

JULICH

CENTRE

SUPERCOMPUTING

Division of Thread Blocks

i

.

SNNNNNS

i

LNNNNNL

LANNNNNL

i

NN

.

il

Y
I

Member of the Helmholtz Association

s

i

[N
YA

29 April 2022

Start with block of certain size

Divide into smaller sub-groups

Continue diving, if algorithm makes it necessity
Methods for dynamic or static divisions (tiles)

In each level: thread of group has unique ID (local index
instead of global index)

Use functions and collectives on sub-set of all threads

JULICH
SUPERCOMPUTING
CENTRE

JULICH

Slide 6143 Forschungszentrum

9:

Cooperative Groups
Thread Groups Overview

Thread Group Landscape

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 29 Apr\'l 2022 Slide 8143 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 29 Apnl 2022 Slide 8143 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 29 ApanOZZ Slide 8143 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 29 ApanOZZ Slide 8143 Forschungszentrum CENTRE

Thread Group Landscape

Thread Block Cluster

Thread Group

Thread Block
Tile

Coalesced Group

Thread Block

Member of the Helmholtz Association 29 April 2022 Slide 8143

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Common Methods of Cooperative Groups

= Fundamental type: thread_group
= Every CG has following member functions
sync() Synchronize the threads of this group (alternative cg: : sync(g))
Before: __syncthreads() for whole block
thread_rank() Getunique ID of current thread in this group (local index)

Before: . x forindex in block
size() Number of threads in this group
Before: . x for number of threads in block
is_valid()

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 9143 J Forschungszentrum

Cooperative Groups
Thread Blocks

Cooperative Thread Blocks

Thread Block

= Easiest entry point to thread groups: cg: :this_thread_block()

= Additional member functions

thread_index() Thread index within block (3D)
group_index() Block index within grid (3D)

= Blocks (and groups) are now concrete entities
— Design functions to represent this!

Member of the Helmholtz Association 29 April 2022 Slide 11143

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Example: Print Rank Function

__device__ void printRank(cg::thread_group g) {
printf("Rank %d\n", g.thread_rank());

}

__global__ void allPrint() {
cg::thread_block b = cg::this_thread_block();
printRank(b);

}

int main() {
allPrint<<<1, 23>>();

}

Member of the Helmholtz Association 29 April 2022 Slide 12143

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task Base Code: Shared Memory Reduction

Outer skeleton

int * array;
cudaMallocManaged(&array, sizeof(int) = N);

for (int i

= 0; 1 < N; i++)
array[i] =

rand() % 1024;

int blocks = 1;
int threads = N;
maxKernel<<<blocks, threads, threads * sizeof(int)>>>(array);

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J

Forschungszentrum

Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J Forschungszentrum

Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)
int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J Forschungszentrum

Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxvalue = maxFunction(shmem_temp, myValue); Call function with

temp array and
thread-local value

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J

Forschungszentrum

Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxvalue = maxFunction(shmem_temp, myValue); Call function with

temp array and
thread-local value

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;o—— Bkl U s

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J

Forschungszentrum

Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();

}

return value;

} @) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; 1 /= 2) {
workspace[lane] = value;

Per loop, halve size of operations

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}

return value;

/ @) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

Per loop, halve size of operations

__syncthreads();

if (lane < 1)) Get max from current thread
value = max(value, workspace[lane + i]);e—— and offset thread

__syncthreads();
}

return value;

/ @) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

Put max value to current lane

__syncthreads(); Per loop, halve size of operations

if (lane < 1)) Get max from current thread
value = max(value, workspace[lane + i]);e—— and offset thread

__syncthreads();
}
return value;

}

Member of the Helmholtz Association 29 April 2022

JULICH
SUPERCOMPUTING
CENTRE

9 JULICH

Forschungszentrum

Slide 13143

1$3333333803300340003008 4000004

Member of the Helmholtz Association 29 April 2022 slide1slas g Forschungszentrum | CENTRE

10011112

718]9
S>>
C—CC <
=

5

J JULICH

SUPERCOMPUTING

JULICH
CENTRE

Forschungszentrum

Slide 13143

29 April 2022

Member of the Helmholtz Association

gg O
A ; }"¢¢¢Q £ <

$08080808888880808080808888888¢¢

@) JULICH| &5
SUPERCOMPUTING
Member of the Helmholtz Association 29AprilZOZZ Slide 13143 Forschungszentvum CENTRE

22088
20088

2288
3;55%533§§§§§§§§§§§§§§§§§§
$55583355

5553558585888

EVAVAVIR 2 VaVIR 2 VAV,

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 13143

C——C—C—C—C—<C
T —
7

§388388888088800025088¢¢
3332353 ceoseeees
FELITEIRESEISEITERECHISHIRIS 4T

$9555855%8

5558

9 JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING

CENTRE

29 April 2022 Slide 13143

Member of the Helmholtz Association

S

$95585858085888854s

2e8
; feesseessess
%%iiiiiéiééiiéii%

555

35555535
5553535
5555535

Member of the Helmholtz Association 29 April 2022 slide1slas g Forschungszentrum | CENTRE

b
=
YVAVAVIR NaVaVIR VaVaVIR 2VaVIR 2 VaV: ‘_53
b
P
o

S

$95585858085888854s

2e8
; feesseessess
%%iiiiiéiééiiéii%

555

35555535
5553535
5555535

Member of the Helmholtz Association 29 April 2022 slide1slas g Forschungszentrum | CENTRE

b
=
YVAVAVIR NaVaVIR VaVaVIR 2VaVIR 2 VaV: ‘_53
b
P
o

Implementing a Cooperative Groups Kernel

From old to new

Location of code: 08-Cooperative_Groups/exercises/tasks/taskil

See Instructions.md for explanations

Follow TODOs to port kernel/device function from traditional CUDA threading model to
new CG model

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 14143 J Forschungszentrum

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Cooperative Groups
Tiling Groups

Tiles of Groups

Dynamically-tiled |
Tile

Thread Block

Divide into smaller groups with cg: : tiled_partition()

Will automatically create smaller groups from parent group
Examples

= Create groups of size 32 of current block
cg::thread_group tile32 = cg::tiled_partition(cg::this_thread_block(), 32);

= Create sub-groups of size 4
cg::thread_group tile4 = cg::tiled_partition(tile32, 4);

Note: Currently, only supported partition sizes are 2, 4, 8, 16, 32

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 16143

Tiles of Groups
Statically-tiled: thread_block_tile |
Tile

= Second version of function: cg: :tiled_partition<>()
= Size of tile is template parameter

— Known at compile time! Optimizations possible!
= Returns thread_block_tile object with additional member functions
= .shfl(),.shfl_down(),.shfl_up(), .shfl_xor()

= .any(),.all(), .ballot();.match_any(), .match_all()
— Intrinsic functions to work with threads inside a warp

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 17143 J

Forschungszentrum

Tiles of Groups

Statically-tiled: thread_block_tile |
Tile

= Second version of function: cg: :tiled_partition<>()

= Size of tile is template parameter

— Known at compile time! Optimizations possible!
= Returns thread_block_tile object with additional member functions
= .shfl(),.shfl_down(),.shfl_up(), .shfl_xor()

= .any(),.all(), .ballot();.match_any(), .match_all()
— Intrinsic functions to work with threads inside a warp

= Example

cg::thread_block_tile<32> tile32
cg::thread_block_tile<s> tile4

cg::tiled_partition<32>(cg::this_thread_block());
cg::tiled_partition<4> (tile32);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 17143

Cooperative Groups
Coalesced Groups

Coalesced Group

Coalesced Group
Thread Block

m cg::coalesced_group active_threads = cg::coalesced_threads();

= Get group of threads which is not diverged
= Threads have same state at point of API call

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 19143 J Forschungszentrum

Coalesced Group

| Coalesced Group

= Get group of threads which is not diverged

= Threads have same state at point of API call
m cg::coalesced_group active_threads = cg::coalesced_threads();

= Example

cg::coalesced_group active_threads = cg::coalesced_threads();
if (i < 5) {
cg::coalesced_group if_true_threads = cg::coalesced_threads();
int rank = if_true_threads.thread_rank();
cg::thread_group partition = cg::tiled_partition(if_true_threads, 2);

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 19143

Cooperative Groups
Binary Partition

Binary Partition

| Coalesced Group

Thread Block

Get group of coalesced threads for which a condition is either true or false

Threads have same state at point of API call and belong to one of two buckets

m cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);

Beta feature, details might change

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 21143 J Forschungszentrum

Binary Partition

| Coalesced Group

Thread Block

= Get group of coalesced threads for which a condition is either true or false

= Threads have same state at point of API call and belong to one of two buckets

m cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);

= Beta feature, details might change

= Example

cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
auto subTile = cg::binary_partition(tile32, isEven(array[cta.thread_rank()]));

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 21143 J Forschungszentrum

Cooperative Groups
Labeled Partition

Labeled Partition
|

Thread Block

Get group of coalesced threads for which a condition is equal

Threads have same state at point of API call and belong to same bucket

Extension of binary partition to general case

cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);

Beta feature, details might change

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 23143 J Forschungszentrum

Labeled Partition
|

Thread Block

= Get group of coalesced threads for which a condition is equal
= Threads have same state at point of API call and belong to same bucket
= Extension of binary partition to general case

m cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);

= Beta feature, details might change

= Example

cg::coalesced_group active = cg::coalesced_threads();
auto labeledGroup = cg::labeled_partition(active, bucket);

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 23143 J Forschungszentrum

Cooperative Groups
Larger Groups

GridGroup e -

= Grid of blocks can also be entity now

= Synchronize across all blocks:
cg::grid_group grid = cg::this_grid();
grid.sync();

= Condition

Blocks must be co-resident on device (Occupancy Calculator)
Kernel must be launched with Cooperative Launch API
cudaLaunchCooperativeKernel() instead of <<<,>>> syntax

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 25143 J Forschungszentrum

Multi-Grid Group

B Multi-Grid Group

= Group of blocks across multiple devices

= Synchronize blocks across devices:
cg::multi_grid_group multi_grid = cg::this_multi_grid();
multi_grid.sync();

= Condition

Kernel must be launched with Cooperative Launch API
cudaLaunchCooperativeKernel() instead of <<<,>>> syntax
Supported by architecture

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 26143 J Forschungszentrum

Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 27143 J Forschungszentrum

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations

Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 27143 J Forschungszentrum

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations

Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 27143 J Forschungszentrum

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Aside: Atomic Operations
Motivation
= Order execution of CUDA threads non-deterministic
= No problem, if each thread works on distinct data
element

= What, if threads collaborate and share data? Read/Write
to same element?

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 28143

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations
Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element

= What, if threads collaborate and share data? Read/Write
to same element?

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 28143

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write ¥ =**1
to same element?
X=6
X
@) JULICH| e
Member of the Helmholtz Association 29 April 2022 Slide 28143 Forschungszentrum CENTRE

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Motivation

= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data

element
= What, if threads collaborate and share data? Read/Write X =**1

to same element? x=x+1

X=6
X =6
X

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 28143

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write X =**1
to same element? x=x+1
X=6
X =6
X
P16

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 28143

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Motivation

= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue

= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write ¥ =**1
to same element?
— Atomic operations

= Safe way to read and write to memory position by

different threads x=6
= Datain global or shared memory X=6
= Example: atomicAdd(&array[i], myvalue) X

xB

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 28143 J Forschungszentrum

X=x+1

m -

= See CUDA Documentation

JULICH
SUPERCOMPUTING
CENTRE

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Examples

= First argument to function (always): address of a value to potentially change
= Old value of address usually returned
m int atomicOp(int * removeVal, int myval)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 29143 J Forschungszentrum

Aside: Atomic Operations

Examples

= First argument to function (always): address of a value to potentially change
= Old value of address usually returned
m int atomicOp(int * removeval, int myVal)
= Examples
atomicAdd(int* address, int val) Addval tothevalue ataddress
atomicExch(int+ address, int val) Storeval ataddress location; return old value
atomicMin(int* address, int val) Store the minimum of val and the value at
address at address location; return old value
atomicCAS(int+* address, int compare, int val) Thevalue ataddressis
compared to compare. If true, val is stored at address; if false, the old
value at address is stored. The old value at address is returned. Basic
function: Compare And Swap

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 29143 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 30143 J Forschungszentrum

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Warp-Synchronous Programming

Warp-Level Intrinsics

Smallest set of executed threads: Warp

Warp: 32 threads executed in SIMT/SIMD fashion
Exchange data between threads of warp

= Global memory: Slow

= Shared memory: Faster

= Directly (registers): Even faster
Safe method access without race conditions

= Global/shared memory: Atomic operations
= Registers: Warp-aggregated Atomic operations

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 32143 J Forschungszentrum

Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 33143 J Forschungszentrum

Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 33143 J

Forschungszentrum

Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero
match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 33143 J

Forschungszentrum

Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero
match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

Available as global device functions, with additional selection mask as first element (as
__shufl_sync() etc.)

Available as member functions of a cg: :tiled_partition group (as g.shf1() etc.)
Intrinsics automatically synchronize after operation - new since CUDA 9

Value can only be retrieved if targeted lane also invokes intrinsic

Per clock cycle: 32 shuffle instructions per SM — very fast!

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 33143 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Warp Intrinsic Example
Everyday I’m Shuffeling

= shfl(): Copy data from target warp lane
= Different flavors

shfl() Copy data from warp lane with ID directly
shfl_up() Copy data from relative warp lane with lower ID (shuffle upstream)
shfl_down() Copy data from relative warp lane with higher ID (shuffle downstream)
shfl_xor() Copy datafrom relative warp lane with ID as calculated by a bitwise XOR

= Example: shfl_down(value, N)withN=16,8,...

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 34143 J Forschungszentrum

Transform Kernel to Warp-Level Reduction without Share

Memory
Expert level 11

= Location of code: 08-Cooperative_Groups/exercises/tasks/task3
= See Instructions.md for explanations

= Follow TODOs to modify maxKernel() such that it uses warp-level atomic operations
(and no shared memory)

= Compile with make, submit to batch system with make run
= See also CUDA C programming guide for details on warp-level functions

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 35143 J Forschungszentrum

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions

Collective Operations

Collective Operations

= |n-group programming (ideally: warp-level programming) can get last bits of
performance; but quite advanced

= Help: Collective operations on thread groups (new and slightly less advanced)
cg::sync() Synchronize threadsin group
cg: :memcpy_async() Copy from global to shared memory in group, non-blocking;
also: cg: :wait
cg::reduce() Reduction operation in group; hardware-accelerated operators:
plus(), less(), greater(),bit_and(),bit_xor(),bit_or()
cg::inclusive_scan() Scan operationin group (also: cg: :exclusive_scan())

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 37143 J

Forschungszentrum

Cooperative Reduce Collective Example

__shared__ int reduction_s[BLOCKSIZE];
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

const int tid = cta.thread_rank();

int value = A[tid];

reduction_s[tid] = cg::reduce(tile, value, cg::plus<int>());

// reduction_s contains tile-sum at all positions associated to tile
cg::sync(cta);

// Still to do: sum partial tile sums

JULICH
SUPERCOMPUTING
CENTRE

g JULICH

Forschungszentrum

Member of the Helmholtz Association 29 April 2022 Slide 38143

Block Clusters

Thread Group Landscape

Thread Block Cluster

Thread Group

Thread Block
Tile

Coalesced Group

Thread Block

Member of the Helmholtz Association 29 April 2022 Slide 40143

9

Grid Group
—————— Multi-Grid Group

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU
= Not many details known yet

= Extend hierarchy:
Threads — Thread Blocks — Grids

Member of the Helmholtz Association 29 April 2022 Slide 41143

New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU
= Not many details known yet

= Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

Member of the Helmholtz Association 29 April 2022 Slide 41143

New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU

Not many details known yet

Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG

Member of the Helmholtz Association 29 April 2022 Slide 41143

[d=1—=1
t=1=i=l I=l=lki=1=1ss
It =1 =1 =l
=1=1 =l
=1 =1 =1
It =1 =1 I
l=E=1 : A
It =1=1 ==l =t=1k
== I ll b
lE=E=1 I W=1=1
=1 I=i=lii=t=tks

Slide 41143

29 April 2022

7 __, |
alil I
7 __, Il
alll Il

ciation

I g =
: I ,_L 7 I | _me 2

i i

New Thread Hierarchy Kid

Member of the Helmholtz Asso

A Threaad Uinvavehyv i A

Memory Controller

1
o
=
=

=

=]
Q
oy
=]

E
[
=

bry Controller

Member of the Helmholtz Association 29 April 2022 Slide 41143

New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU

Not many details known yet

Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG

Enables collaboration of some SMs of GPC; access shared memory (incl. atomics); max.
16 blocks per cluster

Member of the Helmholtz Association 29 April 2022 Slide 41143

New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU

= Not many details known yet

» Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

= Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG

= Enables collaboration of some SMs of GPC; access shared memory (incl. atomics); max.
16 blocks per cluster

Grid with Clusters (H100)
Thread Block Cluster Thread Block Cluster

Grid (A100)

i J i il

Thread Thread Thread Thread
Block Block Block Block

L AR LT R

Member of the Helmholtz Association 29 April 2022 Slide 41143

Conclusions

Conclusions

CG alternative model to create groups

Groups are entities, have member functions

Synchronizing is important (not mentioned before: __syncwarps())

Warp-level functions easily accessible from groups

CG are quite new, let’s see how they develop

See also further literature in Appendix

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 43143 J Forschungszentrum

Conclusions

CG alternative model to create groups

Groups are entities, have member functions

Synchronizing is important (not mentioned before: __syncwarps())

Warp-level functions easily accessible from groups

CG are quite new, let’s see how they develop

See also further literature in Appendix Thankyou
ur attentlon‘

for yo

de
a.herten@fZ- ch-

Jueh

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 43143 J Forschungszentrum

mailto:a.herten@fz-juelich.de

Appendix

Appendix
Further Literature
Glossary
References: Images

Member of the Helmholtz Association 29 April 2022

Slide 215

9

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

Further Literature

NVIDIA Developer Blog: Cooperative Groups: Flexible CUDA Thread Programming
NVIDIA Developer Blog: Inside Volta: The World’s Most Advanced Data Center GPU
NVIDIA Developer Blog: Using CUDA Warp-Level Primitives

Talk at GPU Technology Conference 2018: Cooperative Groups by Kyrylo Perelygin and
Yuan Lin

Talk: Warp-synchronous programming with Cooperative Groups by Sylvain Collange

Book: CUDA Programming by Shane Cook

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 315 J Forschungszentrum

https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-scalable-cuda.pdf
http://www.irisa.fr/alf/downloads/collange/talks/collange_warp_synchronous_gpu17.pdf
https://www.elsevier.com/books/cuda-programming/cook/978-0-12-415933-4

Glossary |

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 42, 43, 45, 46, 48, 49, 51, 52

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 5,36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 67, 68, 69, 70, 72

NVIDIA US technology company creating GPUs. 91
CG Cooperative Groups. 7, 8, 16, 36, 53, 54, 55, 64, 86, 87

GPU Graphics Processing Unit. 91

SIMD Single Instruction, Multiple Data. 66
SIMT Single Instruction, Multiple Threads. 5, 66
SM Streaming Multiprocessor. 67, 68, 69, 70

@) JULICH
Member of the Helmholtz Association 29 April 2022 slide 415 J Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE

References: Images, Graphics |

[1] VYuriy Rzhemovskiy. Teenage Penguins. Freely available at Unsplash. urL:
https://unsplash.com/photos/qFxS5FkUSAQ.

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 515 J Forschungszentrum

https://unsplash.com/photos/qFxS5FkUSAQ

	Outline
	Motivation
	Basis

	Cooperative Groups
	Introduction
	Thread Groups Overview
	Thread Blocks
	Task 1
	Tiling Groups
	Coalesced Groups
	Binary Partition
	Labeled Partition
	Larger Groups
	Task 2

	Warp-Synchronous Programming
	Overview
	Task 3

	Collective Operations
	Block Clusters
	Conclusions
	Appendix
	Appendix
	Further Literature
	Glossary

	Glossary
	Acronyms
	References: Images

	References

