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Overview, Outline

At a Glance

= Cooperative Groups: New model to work with thread groups
= Thread groups are entities, intrinsic function as member functions
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Standard CUDA Threading Model

Before CUDA 9

= Many threads, combined into blocks, on a grid; in 3D

= Operation: Single Instruction, Multiple Threads (SIMT)

= Thread waiting for result of instruction? Use computational
resource with other threads in meantime!

= Group of threads execute in lockstep: Warp (currently 32
threads)
= Same instructions
= Branching possible
= Predicates (and masks)

= Shared memory: Fast, shared between threads of block

= Synchronization between threads of blocks:
__syncthreads() - barrier for all threads of block
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New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.
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New Model: Cooperative Groups

= Motivation to extend classical model
Algorithmic Not all algorithms map easily to available synchronization methods;
synchronization should be more flexible
Design Make groups of threads explicit entities
Hardware Access new hardware features (Independent Thread Scheduling, Thread
Block Clusters)

— Cooperative Groups (CG)
A flexible model for synchronization and communication within groups of threads.
= Allin namespace cooperative_groups (cooperative_groups.h header)

= Followingin text: cooperative_groups::func() — cg: : func()
namespace cg = cooperative_groups;
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Division of Thread Blocks
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Start with block of certain size

Divide into smaller sub-groups

Continue diving, if algorithm makes it necessity
Methods for dynamic or static divisions (tiles)

In each level: thread of group has unique ID (local index
instead of global index)

Use functions and collectives on sub-set of all threads
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Cooperative Groups
Thread Groups Overview



Thread Group Landscape
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Thread Group Landscape

Thread Block
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Thread Group Landscape

Thread Block
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Thread Group Landscape

Thread Block
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Thread Group Landscape

Thread Block Cluster

Thread Group

Thread Block
Tile

Coalesced Group

Thread Block
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Common Methods of Cooperative Groups

= Fundamental type: thread_group
= Every CG has following member functions
sync() Synchronize the threads of this group (alternative cg: : sync(g))
Before: __syncthreads() for whole block
thread_rank() Getunique ID of current thread in this group (local index)

Before: . x forindex in block
size() Number of threads in this group
Before: . x for number of threads in block
is_valid()
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Cooperative Groups
Thread Blocks



Cooperative Thread Blocks

Thread Block

= Easiest entry point to thread groups: cg: :this_thread_block()

= Additional member functions

thread_index() Thread index within block (3D)
group_index() Block index within grid (3D)

= Blocks (and groups) are now concrete entities
— Design functions to represent this!
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Example: Print Rank Function

__device__ void printRank(cg::thread_group g) {
printf("Rank %d\n", g.thread_rank());

}

__global__ void allPrint() {
cg::thread_block b = cg::this_thread_block();
printRank(b);

}

int main() {
allPrint<<<1, 23>>();

}
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Task Base Code: Shared Memory Reduction

Outer skeleton

int * array;
cudaMallocManaged(&array, sizeof(int) = N);

for (int i

= 0; 1 < N; i++)
array[i] =

rand() % 1024;

int blocks = 1;
int threads = N;
maxKernel<<<blocks, threads, threads * sizeof(int)>>>(array);
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Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int * array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex];

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;
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Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)
int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxValue = maxFunction(shmem_temp, myValue);

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;
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Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxvalue = maxFunction(shmem_temp, myValue); Call function with

temp array and
thread-local value

__syncthreads();
if (threadIndex == 0)
array[0] = maxValue;
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Task Base Code: Shared Memory Reduction

Inner logic: Kernel

__global__ void maxKernel(int = array) {
extern __shared__ int shmem_temp[]; // threads * sizeof(int)

int threadIndex = threadIdx.x;
int myValue = array[threadIndex]l;je—— el GO EilEer

int maxvalue = maxFunction(shmem_temp, myValue); Call function with

temp array and
thread-local value

__syncthreads();
if (threadIndex == 0)

array[0] = maxValue;o—— Bkl U s

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 13143 J

Forschungszentrum




Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();

}

return value;
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Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; 1 /= 2) {
workspace[lane] = value;

Per loop, halve size of operations

__syncthreads();

if (lane < i)
value = max(value, workspace[lane + i]);

__syncthreads();
}

return value;
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Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

Per loop, halve size of operations

__syncthreads();

if (lane < 1) ) Get max from current thread
value = max(value, workspace[lane + i]);e—— and offset thread

__syncthreads();
}

return value;
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Task Base Code: Shared Memory Reduction

Inner logic: Function

__device__ int maxFunction(int * workspace, int value) {
int lane = threadIdx.x;

for (int i = blockDim.x / 2; i > 0; i /= 2) {
workspace[lane] = value;

Put max value to current lane

__syncthreads(); Per loop, halve size of operations

if (lane < 1) ) Get max from current thread
value = max(value, workspace[lane + i]);e—— and offset thread

__syncthreads();
}
return value;

}
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Implementing a Cooperative Groups Kernel

From old to new

Location of code: 08-Cooperative_Groups/exercises/tasks/taskil

See Instructions.md for explanations

Follow TODOs to port kernel/device function from traditional CUDA threading model to
new CG model

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups
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Cooperative Groups
Tiling Groups



Tiles of Groups

Dynamically-tiled |
Tile

Thread Block

Divide into smaller groups with cg: : tiled_partition()

Will automatically create smaller groups from parent group
Examples

= Create groups of size 32 of current block
cg::thread_group tile32 = cg::tiled_partition(cg::this_thread_block(), 32);

= Create sub-groups of size 4
cg::thread_group tile4 = cg::tiled_partition(tile32, 4);

Note: Currently, only supported partition sizes are 2, 4, 8, 16, 32
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Tiles of Groups
Statically-tiled: thread_block_tile |
Tile

= Second version of function: cg: :tiled_partition<>()
= Size of tile is template parameter

— Known at compile time! Optimizations possible!
= Returns thread_block_tile object with additional member functions
= .shfl(),.shfl_down(),.shfl_up(), .shfl_xor()

= .any(),.all(), .ballot();.match_any(), .match_all()
— Intrinsic functions to work with threads inside a warp
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Tiles of Groups

Statically-tiled: thread_block_tile |
Tile

= Second version of function: cg: :tiled_partition<>()

= Size of tile is template parameter

— Known at compile time! Optimizations possible!
= Returns thread_block_tile object with additional member functions
= .shfl(),.shfl_down(),.shfl_up(), .shfl_xor()

= .any(),.all(), .ballot();.match_any(), .match_all()
— Intrinsic functions to work with threads inside a warp

= Example

cg::thread_block_tile<32> tile32
cg::thread_block_tile<s> tile4

cg::tiled_partition<32>(cg::this_thread_block());
cg::tiled_partition<4> (tile32);
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Cooperative Groups
Coalesced Groups



Coalesced Group

Coalesced Group
Thread Block

m cg::coalesced_group active_threads = cg::coalesced_threads();

= Get group of threads which is not diverged
= Threads have same state at point of API call
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Coalesced Group

| Coalesced Group

= Get group of threads which is not diverged

= Threads have same state at point of API call
m cg::coalesced_group active_threads = cg::coalesced_threads();

= Example

cg::coalesced_group active_threads = cg::coalesced_threads();
if (i < 5) {
cg::coalesced_group if_true_threads = cg::coalesced_threads();
int rank = if_true_threads.thread_rank();
cg::thread_group partition = cg::tiled_partition(if_true_threads, 2);
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Cooperative Groups
Binary Partition



Binary Partition

| Coalesced Group

Thread Block

Get group of coalesced threads for which a condition is either true or false

Threads have same state at point of API call and belong to one of two buckets

m cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);

Beta feature, details might change

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 21143 J Forschungszentrum




Binary Partition

| Coalesced Group

Thread Block

= Get group of coalesced threads for which a condition is either true or false

= Threads have same state at point of API call and belong to one of two buckets

m cg::coalesced_group partitioned_threads = cg::binary_partition(group,
condition);

= Beta feature, details might change

= Example

cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
auto subTile = cg::binary_partition(tile32, isEven(array[cta.thread_rank()]) );
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Cooperative Groups
Labeled Partition



Labeled Partition
|

Thread Block

Get group of coalesced threads for which a condition is equal

Threads have same state at point of API call and belong to same bucket

Extension of binary partition to general case

cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);

Beta feature, details might change
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Labeled Partition
|

Thread Block

= Get group of coalesced threads for which a condition is equal
= Threads have same state at point of API call and belong to same bucket
= Extension of binary partition to general case

m cg::coalesced_group partitioned_threads = cg::labeled_partition(group,
condition);

= Beta feature, details might change

= Example

cg::coalesced_group active = cg::coalesced_threads();
auto labeledGroup = cg::labeled_partition(active, bucket);
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Cooperative Groups
Larger Groups



GridGroup e -

= Grid of blocks can also be entity now

= Synchronize across all blocks:
cg::grid_group grid = cg::this_grid();
grid.sync();

= Condition

Blocks must be co-resident on device (Occupancy Calculator)
Kernel must be launched with Cooperative Launch API
cudaLaunchCooperativeKernel() instead of <<<,>>> syntax
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Multi-Grid Group

B Multi-Grid Group

= Group of blocks across multiple devices

= Synchronize blocks across devices:
cg::multi_grid_group multi_grid = cg::this_multi_grid();
multi_grid.sync();

= Condition

Kernel must be launched with Cooperative Launch API
cudaLaunchCooperativeKernel() instead of <<<,>>> syntax
Supported by architecture
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Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups
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http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations

Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups
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Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations

Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups
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http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Aside: Atomic Operations
Motivation
= Order execution of CUDA threads non-deterministic
= No problem, if each thread works on distinct data
element

= What, if threads collaborate and share data? Read/Write
to same element?
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Aside: Atomic Operations
Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element

= What, if threads collaborate and share data? Read/Write
to same element?
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Aside: Atomic Operations

Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write ¥ =**1
to same element?
X=6
X
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Aside: Atomic Operations

Motivation

= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data

element
= What, if threads collaborate and share data? Read/Write X =**1

to same element? x=x+1

X=6
X =6
X
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Aside: Atomic Operations

Motivation
= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue
= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write X =**1
to same element? x=x+1
X=6
X =6
X
P16
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Aside: Atomic Operations

Motivation

= Order execution of CUDA threads non-deterministic array[1] = array[1] + myvalue

= No problem, if each thread works on distinct data
element
= What, if threads collaborate and share data? Read/Write ¥ =**1
to same element?
— Atomic operations

= Safe way to read and write to memory position by

different threads x=6
= Datain global or shared memory X=6
= Example: atomicAdd(&array[i], myvalue) X

xB
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Aside: Atomic Operations

Examples

= First argument to function (always): address of a value to potentially change
= Old value of address usually returned
m int atomicOp(int * removeVal, int myval)

JULICH
SUPERCOMPUTING
CENTRE

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 29143 J Forschungszentrum




Aside: Atomic Operations

Examples

= First argument to function (always): address of a value to potentially change
= Old value of address usually returned
m int atomicOp(int * removeval, int myVal)
= Examples
atomicAdd(int* address, int val) Addval tothevalue ataddress
atomicExch(int+ address, int val) Storeval ataddress location; return old value
atomicMin(int* address, int val) Store the minimum of val and the value at
address at address location; return old value
atomicCAS(int+* address, int compare, int val) Thevalue ataddressis
compared to compare. If true, val is stored at address; if false, the old
value at address is stored. The old value at address is returned. Basic
function: Compare And Swap
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Cooperative Groups with Tiled Partitions

Sub-divisions

Location of code: 08-Cooperative_Groups/exercises/tasks/task2

See Instructions.md for explanations
Follow TODOs to tile a CG and use kernel from Task 1; atomic operations needed

Compile with make, submit to batch system with make run

See also CUDA C programming guide for details on Cooperative Groups
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Warp-Synchronous Programming



Warp-Level Intrinsics

Smallest set of executed threads: Warp

Warp: 32 threads executed in SIMT/SIMD fashion
Exchange data between threads of warp

= Global memory: Slow

= Shared memory: Faster

= Directly (registers): Even faster
Safe method access without race conditions

= Global/shared memory: Atomic operations
= Registers: Warp-aggregated Atomic operations
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Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
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Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero
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Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero
match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)
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Warp Intrinsics Overview

shfl(int lane) Copy datafrom atarget warp lane; also: other flavors (next slide)
all(int pred) If predicate (comparison, relation) evaluates to non-zero (true) for all
threads, return non-zero (true)
any(int pred) If predicate evaluates to non-zero for any thread, return non-zero
ballot(int pred) Return abit mask which has 1s set for all thread for which predicate
evaluates to non-zero
match_any(T value) Return a bit mask of threads which have same value of value as current
thread; also: match_all(T value)

Available as global device functions, with additional selection mask as first element (as
__shufl_sync() etc.)

Available as member functions of a cg: :tiled_partition group (as g.shf1() etc.)
Intrinsics automatically synchronize after operation - new since CUDA 9

Value can only be retrieved if targeted lane also invokes intrinsic

Per clock cycle: 32 shuffle instructions per SM — very fast!

@) JULICH
Member of the Helmholtz Association 29 April 2022 Slide 33143 J

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE




Warp Intrinsic Example
Everyday I’m Shuffeling

= shfl(): Copy data from target warp lane
= Different flavors

shfl() Copy data from warp lane with ID directly
shfl_up() Copy data from relative warp lane with lower ID (shuffle upstream)
shfl_down() Copy data from relative warp lane with higher ID (shuffle downstream)
shfl_xor() Copy datafrom relative warp lane with ID as calculated by a bitwise XOR

= Example: shfl_down(value, N)withN=16,8,...
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Transform Kernel to Warp-Level Reduction without Share

Memory
Expert level 11

= Location of code: 08-Cooperative_Groups/exercises/tasks/task3
= See Instructions.md for explanations

= Follow TODOs to modify maxKernel() such that it uses warp-level atomic operations
(and no shared memory)

= Compile with make, submit to batch system with make run
= See also CUDA C programming guide for details on warp-level functions
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Collective Operations

= |n-group programming (ideally: warp-level programming) can get last bits of
performance; but quite advanced

= Help: Collective operations on thread groups (new and slightly less advanced)
cg::sync() Synchronize threadsin group
cg: :memcpy_async() Copy from global to shared memory in group, non-blocking;
also: cg: :wait
cg::reduce() Reduction operation in group; hardware-accelerated operators:
plus(), less(), greater(),bit_and(),bit_xor(),bit_or()
cg::inclusive_scan() Scan operationin group (also: cg: :exclusive_scan())
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Cooperative Reduce Collective Example

__shared__ int reduction_s[BLOCKSIZE];
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

const int tid = cta.thread_rank();

int value = A[tid];

reduction_s[tid] = cg::reduce(tile, value, cg::plus<int>());

// reduction_s contains tile-sum at all positions associated to tile
cg::sync(cta);

// Still to do: sum partial tile sums
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Block Clusters



Thread Group Landscape

Thread Block Cluster

Thread Group

Thread Block
Tile

Coalesced Group

Thread Block
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New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU
= Not many details known yet

= Extend hierarchy:
Threads — Thread Blocks — Grids

Member of the Helmholtz Association 29 April 2022 Slide 41143




New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU
= Not many details known yet

= Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids
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New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU

Not many details known yet

Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG
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New Thread Hierarchy Kid

New feature to be available in next-gen H100 GPU

Not many details known yet

Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG

Enables collaboration of some SMs of GPC; access shared memory (incl. atomics); max.
16 blocks per cluster
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New Thread Hierarchy Kid

= New feature to be available in next-gen H100 GPU

= Not many details known yet

» Extend hierarchy:
Threads — Thread Blocks — Thread Block Clusters — Grids

= Exposes the GPC (GPU Processing Cluster) hardware to software - only through CG

= Enables collaboration of some SMs of GPC; access shared memory (incl. atomics); max.
16 blocks per cluster
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Conclusions



Conclusions

CG alternative model to create groups

Groups are entities, have member functions

Synchronizing is important (not mentioned before: __syncwarps())

Warp-level functions easily accessible from groups

CG are quite new, let’s see how they develop

See also further literature in Appendix
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Conclusions

CG alternative model to create groups

Groups are entities, have member functions

Synchronizing is important (not mentioned before: __syncwarps())

Warp-level functions easily accessible from groups

CG are quite new, let’s see how they develop

See also further literature in Appendix Thankyou
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Further Literature

NVIDIA Developer Blog: Cooperative Groups: Flexible CUDA Thread Programming
NVIDIA Developer Blog: Inside Volta: The World’s Most Advanced Data Center GPU
NVIDIA Developer Blog: Using CUDA Warp-Level Primitives

Talk at GPU Technology Conference 2018: Cooperative Groups by Kyrylo Perelygin and
Yuan Lin

Talk: Warp-synchronous programming with Cooperative Groups by Sylvain Collange

Book: CUDA Programming by Shane Cook
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https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-scalable-cuda.pdf
http://www.irisa.fr/alf/downloads/collange/talks/collange_warp_synchronous_gpu17.pdf
https://www.elsevier.com/books/cuda-programming/cook/978-0-12-415933-4

Glossary |

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 42, 43, 45, 46, 48, 49, 51, 52

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 5,36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 67, 68, 69, 70, 72

NVIDIA US technology company creating GPUs. 91
CG Cooperative Groups. 7, 8, 16, 36, 53, 54, 55, 64, 86, 87

GPU Graphics Processing Unit. 91

SIMD Single Instruction, Multiple Data. 66
SIMT Single Instruction, Multiple Threads. 5, 66
SM Streaming Multiprocessor. 67, 68, 69, 70
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References: Images, Graphics |

[1] VYuriy Rzhemovskiy. Teenage Penguins. Freely available at Unsplash. urL:
https://unsplash.com/photos/qFxS5FkUSAQ.
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