001     916032
005     20230217124543.0
024 7 _ |a 10.1523/JNEUROSCI.0658-22.2022
|2 doi
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a 2128/33200
|2 Handle
024 7 _ |a 36223999
|2 pmid
024 7 _ |a WOS:000903701700013
|2 WOS
037 _ _ |a FZJ-2022-05878
082 _ _ |a 610
100 1 _ |a Niedernhuber, Maria
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Sensory target detection at local and global timescales reveals a hierarchy of supramodal dynamics in the human cortex
260 _ _ |a Washington, DC
|c 2022
|b Soc.
264 _ 1 |3 online
|2 Crossref
|b Society for Neuroscience
|c 2022-10-12
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671601695_30681
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To ensure survival in a dynamic environment, the human neocortex monitors input streams from different sensory organs for important sensory events. Which principles govern whether different senses share common or modality-specific brain networks for sensory target detection? We examined whether complex targets evoke sustained supramodal activity while simple targets rely on modality-specific networks with short-lived supramodal contributions. In a series of hierarchical multisensory target detection studies (n = 77, of either sex) using EEG, we applied a temporal cross-decoding approach to dissociate supramodal and modality-specific cortical dynamics elicited by rule-based global and feature-based local sensory deviations within and between the visual, somatosensory, and auditory modality. Our data show that each sense implements a cortical hierarchy orchestrating supramodal target detection responses, which operate at local and global timescales in successive processing stages. Across different sensory modalities, simple feature-based sensory deviations presented in temporal vicinity to a monotonous input stream triggered a mismatch negativity-like local signal which decayed quickly and early, whereas complex rule-based targets tracked across time evoked a P3b-like global neural response which generalized across a late time window. Converging results from temporal cross-modality decoding analyses across different datasets, we reveal that global neural responses are sustained in a supramodal higher-order network, whereas local neural responses canonically thought to rely on modality-specific regions evolve into short-lived supramodal activity. Together, our findings demonstrate that cortical organization largely follows a gradient in which short-lived modality-specific as well as supramodal processes dominate local responses, whereas higher-order processes encode temporally extended abstract supramodal information fed forward from modality-specific cortices.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 1
700 1 _ |a Sitt, Jacobo D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bekinschtein, Tristan A.
|0 P:(DE-HGF)0
|b 3
773 1 8 |a 10.1523/jneurosci.0658-22.2022
|b Society for Neuroscience
|d 2022-10-12
|p JN-RM-0658-22
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|y 2022
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.0658-22.2022
|g p. JN-RM-0658-22 -
|0 PERI:(DE-600)1475274-8
|n 46
|p JN-RM-0658-22
|t The journal of neuroscience
|v 42
|y 2022
|x 0270-6474
856 4 _ |u https://juser.fz-juelich.de/record/916032/files/8729.full.pdf
|y Published on 2022-11-16. Available in OpenAccess from 2023-05-16.
909 C O |o oai:juser.fz-juelich.de:916032
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185083
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21