000916054 001__ 916054 000916054 005__ 20230224084251.0 000916054 0247_ $$2doi$$a10.3390/ijms232113185 000916054 0247_ $$2ISSN$$a1422-0067 000916054 0247_ $$2ISSN$$a1661-6596 000916054 0247_ $$2Handle$$a2128/33515 000916054 0247_ $$2pmid$$a36361973 000916054 0247_ $$2WOS$$aWOS:000881191100001 000916054 037__ $$aFZJ-2022-05900 000916054 082__ $$a540 000916054 1001_ $$00000-0001-9000-9938$$aSieme, Daniel$$b0 000916054 245__ $$aMetal Binding to Sodium Heparin Monitored by Quadrupolar NMR 000916054 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2022 000916054 3367_ $$2DRIVER$$aarticle 000916054 3367_ $$2DataCite$$aOutput Types/Journal article 000916054 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673518041_31061 000916054 3367_ $$2BibTeX$$aARTICLE 000916054 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000916054 3367_ $$00$$2EndNote$$aJournal Article 000916054 520__ $$aHeparins and heparan sulfate polysaccharides are negatively charged glycosaminoglycans and play important roles in cell-to-matrix and cell-to-cell signaling processes. Metal ion binding to heparins alters the conformation of heparins and influences their function. Various experimental techniques have been used to investigate metal ion-heparin interactions, frequently with inconsistent results. Exploiting the quadrupolar 23Na nucleus, we herein develop a 23Na NMR-based competition assay and monitor the binding of divalent Ca2+ and Mg2+ and trivalent Al3+ metal ions to sodium heparin and the consequent release of sodium ions from heparin. The 23Na spin relaxation rates and translational diffusion coefficients are utilized to quantify the metal ion-induced release of sodium ions from heparin. In the case of the Al3+ ion, the complementary approach of 27Al quadrupolar NMR is employed as a direct probe of ion binding to heparin. Our NMR results demonstrate at least two metal ion-binding sites with different affinities on heparin, potentially undergoing dynamic exchange. For the site with lower metal ion binding affinity, the order of Ca2+ > Mg2+ > Al3+ is obtained, in which even the weakly binding Al3+ ion is capable of displacing sodium ions from heparin. Overall, the multinuclear quadrupolar NMR approach employed here can monitor and quantify metal ion binding to heparin and capture different modes of metal ion-heparin binding. 000916054 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0 000916054 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1 000916054 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000916054 7001_ $$00000-0002-1266-4344$$aGriesinger, Christian$$b1 000916054 7001_ $$0P:(DE-Juel1)194492$$aRezaie Ghaleh, Nasrollah$$b2$$eCorresponding author$$ufzj 000916054 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms232113185$$gVol. 23, no. 21, p. 13185 -$$n21$$p13185 -$$tInternational journal of molecular sciences$$v23$$x1422-0067$$y2022 000916054 8564_ $$uhttps://juser.fz-juelich.de/record/916054/files/Metal%20Binding%20to%20Sodium%20Heparin%20Monitored%20by%20Quadrupolar%20NMR.pdf$$yOpenAccess 000916054 909CO $$ooai:juser.fz-juelich.de:916054$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000916054 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194492$$aForschungszentrum Jülich$$b2$$kFZJ 000916054 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0 000916054 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1 000916054 9141_ $$y2022 000916054 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25 000916054 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000916054 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2021$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J MOL SCI : 2021$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-04T08:27:04Z 000916054 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-04T08:27:04Z 000916054 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000916054 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25 000916054 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-04T08:27:04Z 000916054 920__ $$lyes 000916054 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0 000916054 980__ $$ajournal 000916054 980__ $$aVDB 000916054 980__ $$aUNRESTRICTED 000916054 980__ $$aI:(DE-Juel1)IBI-7-20200312 000916054 9801_ $$aFullTexts