001     916060
005     20230224084239.0
024 7 _ |a 10.1016/j.ijbiomac.2022.06.154
|2 doi
024 7 _ |a 0141-8130
|2 ISSN
024 7 _ |a 1879-0003
|2 ISSN
024 7 _ |a 35772638
|2 pmid
024 7 _ |a WOS:000861847600003
|2 WOS
037 _ _ |a FZJ-2022-05906
082 _ _ |a 570
100 1 _ |a Rahban, Mahdie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673610293_24902
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-Print vorhanden
520 _ _ |a Increasing the temperature by just a few degrees may lead to structural perturbation or unfolding of the protein and consequent loss of function. The concepts of flexibility and rigidity are fundamental for understanding the relationships between function, structure and stability. Protein unfolding can often be triggered by thermal fluctuations with flexible residues usually on the protein surface. Therefore, identification and knowledge of the effect of modification to flexible regions in protein structures are required for efficient protein engineering and the rational design of thermally stable proteins. The most flexible regions in protein are loops, hence their rigidification is one of the effective strategies for increasing thermal stability. Directed evolution or rational design by computational prediction can also lead to the generation of thermally stable proteins. Computational protein design has been improved significantly in recent years and has successfully produced de novo stable backbone structures with optimized sequences and functions. This review discusses intramolecular and intermolecular interactions that determine the protein structure, and the strategies utilized in the mutagenesis of mesophilic proteins to stabilize and improve the functional characteristics of biocatalysts by describing efficient techniques and strategies to rigidify flexible loops at appropriate positions in the structure of the protein.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zolghadri, Samaneh
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Salehi, Najmeh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ahmad, Faizan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Haertlé, Thomas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rezaie Ghaleh, Nasrollah
|0 P:(DE-Juel1)194492
|b 5
700 1 _ |a Sawyer, Lindsay
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Saboury, Ali Akbar
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.ijbiomac.2022.06.154
|g Vol. 214, p. 642 - 654
|0 PERI:(DE-600)1483284-7
|p 642 - 654
|t International journal of biological macromolecules
|v 214
|y 2022
|x 0141-8130
856 4 _ |u https://juser.fz-juelich.de/record/916060/files/rahban2022-IJBM_Thermal%20stability%20enhancement%20Fundamental%20concepts%20of%20protein-1.pdf
909 C O |o oai:juser.fz-juelich.de:916060
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)194492
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J BIOL MACROMOL : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J BIOL MACROMOL : 2021
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21