000916067 001__ 916067
000916067 005__ 20240712100837.0
000916067 0247_ $$2doi$$a10.1364/AO.473147
000916067 0247_ $$2ISSN$$a1559-128X
000916067 0247_ $$2ISSN$$a0003-6935
000916067 0247_ $$2ISSN$$a1539-4522
000916067 0247_ $$2ISSN$$a1540-8981
000916067 0247_ $$2ISSN$$a2155-3165
000916067 0247_ $$2pmid$$a36607115
000916067 0247_ $$2WOS$$aWOS:000907162800002
000916067 037__ $$aFZJ-2022-05913
000916067 082__ $$a530
000916067 1001_ $$0P:(DE-HGF)0$$aWei, Daikang$$b0$$eCorresponding author
000916067 245__ $$aModeling and correction of fringe patterns in Doppler asymmetric spatial heterodyne interferometry
000916067 260__ $$aWashington, DC$$bOptical Soc. of America$$c2022
000916067 3367_ $$2DRIVER$$aarticle
000916067 3367_ $$2DataCite$$aOutput Types/Journal article
000916067 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672918640_23969
000916067 3367_ $$2BibTeX$$aARTICLE
000916067 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916067 3367_ $$00$$2EndNote$$aJournal Article
000916067 520__ $$aDoppler asymmetric spatial heterodyne (DASH) interferometry is a novel concept for observing atmospheric winds. This paper discusses a numerical model for the simulation of fringe patterns and a methodology to correct fringe images for extracting Doppler information from ground-based DASH measurements. Based on the propagation of optical waves, the fringe pattern was modeled considering different angular deviations and optical aberrations. A dislocation between two gratings can introduce an additional spatial modulation associated with the diffraction order, which was seen in laboratory measurements. A phase correction is proposed to remove phase differences between different row interferograms, which is the premise for calculating the average interferogram to improve the signal-to-noise ratio. Laboratory tests, simulation results, and Doppler velocity measurements indicate that a matrix determined in the laboratory can be applied to correct interferograms obtained from ground-based DASH measurements.
000916067 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000916067 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916067 7001_ $$0P:(DE-Juel1)174127$$aGong, Qiucheng$$b1
000916067 7001_ $$0P:(DE-Juel1)176130$$aChen, Qiuyu$$b2
000916067 7001_ $$0P:(DE-Juel1)156366$$aZhu, Yajun$$b3
000916067 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b4
000916067 7001_ $$0P:(DE-Juel1)177834$$aOlschewski, Friedhelm$$b5
000916067 7001_ $$0P:(DE-HGF)0$$aKnieling, Peter$$b6
000916067 7001_ $$0P:(DE-HGF)0$$aDötzer, Florian$$b7
000916067 7001_ $$0P:(DE-HGF)0$$aMantel, Klaus$$b8
000916067 7001_ $$0P:(DE-HGF)0$$aXu, Jiyao$$b9
000916067 7001_ $$0P:(DE-Juel1)16343$$aKoppmann, Ralf$$b10
000916067 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b11
000916067 773__ $$0PERI:(DE-600)1474462-4$$a10.1364/AO.473147$$gVol. 61, no. 35, p. 10528 -$$n35$$p10528 - 10537$$tApplied optics$$v61$$x1559-128X$$y2022
000916067 8564_ $$uhttps://juser.fz-juelich.de/record/916067/files/Optica-journal-template.pdf$$yRestricted
000916067 909CO $$ooai:juser.fz-juelich.de:916067$$pVDB
000916067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174127$$aForschungszentrum Jülich$$b1$$kFZJ
000916067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176130$$aForschungszentrum Jülich$$b2$$kFZJ
000916067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b4$$kFZJ
000916067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177834$$aForschungszentrum Jülich$$b5$$kFZJ
000916067 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b11$$kFZJ
000916067 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000916067 9141_ $$y2022
000916067 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL OPTICS : 2021$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
000916067 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-13
000916067 920__ $$lyes
000916067 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000916067 980__ $$ajournal
000916067 980__ $$aVDB
000916067 980__ $$aI:(DE-Juel1)IEK-7-20101013
000916067 980__ $$aUNRESTRICTED
000916067 981__ $$aI:(DE-Juel1)ICE-4-20101013