001     916067
005     20240712100837.0
024 7 _ |a 10.1364/AO.473147
|2 doi
024 7 _ |a 1559-128X
|2 ISSN
024 7 _ |a 0003-6935
|2 ISSN
024 7 _ |a 1539-4522
|2 ISSN
024 7 _ |a 1540-8981
|2 ISSN
024 7 _ |a 2155-3165
|2 ISSN
024 7 _ |a 36607115
|2 pmid
024 7 _ |a WOS:000907162800002
|2 WOS
037 _ _ |a FZJ-2022-05913
082 _ _ |a 530
100 1 _ |a Wei, Daikang
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Modeling and correction of fringe patterns in Doppler asymmetric spatial heterodyne interferometry
260 _ _ |a Washington, DC
|c 2022
|b Optical Soc. of America
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672918640_23969
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Doppler asymmetric spatial heterodyne (DASH) interferometry is a novel concept for observing atmospheric winds. This paper discusses a numerical model for the simulation of fringe patterns and a methodology to correct fringe images for extracting Doppler information from ground-based DASH measurements. Based on the propagation of optical waves, the fringe pattern was modeled considering different angular deviations and optical aberrations. A dislocation between two gratings can introduce an additional spatial modulation associated with the diffraction order, which was seen in laboratory measurements. A phase correction is proposed to remove phase differences between different row interferograms, which is the premise for calculating the average interferogram to improve the signal-to-noise ratio. Laboratory tests, simulation results, and Doppler velocity measurements indicate that a matrix determined in the laboratory can be applied to correct interferograms obtained from ground-based DASH measurements.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gong, Qiucheng
|0 P:(DE-Juel1)174127
|b 1
700 1 _ |a Chen, Qiuyu
|0 P:(DE-Juel1)176130
|b 2
700 1 _ |a Zhu, Yajun
|0 P:(DE-Juel1)156366
|b 3
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 4
700 1 _ |a Olschewski, Friedhelm
|0 P:(DE-Juel1)177834
|b 5
700 1 _ |a Knieling, Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dötzer, Florian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mantel, Klaus
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Xu, Jiyao
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Koppmann, Ralf
|0 P:(DE-Juel1)16343
|b 10
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 11
773 _ _ |a 10.1364/AO.473147
|g Vol. 61, no. 35, p. 10528 -
|0 PERI:(DE-600)1474462-4
|n 35
|p 10528 - 10537
|t Applied optics
|v 61
|y 2022
|x 1559-128X
856 4 _ |u https://juser.fz-juelich.de/record/916067/files/Optica-journal-template.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:916067
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174127
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)177834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL OPTICS : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21