001     916075
005     20230227201810.0
024 7 _ |a 10.1002/smll.202200053
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 2128/33169
|2 Handle
024 7 _ |a 35527345
|2 pmid
024 7 _ |a WOS:000792050700001
|2 WOS
037 _ _ |a FZJ-2022-05921
082 _ _ |a 620
100 1 _ |a Shokoohimehr, Pegah
|0 P:(DE-Juel1)165189
|b 0
245 _ _ |a High‐Aspect‐Ratio Nanoelectrodes Enable Long‐Term Recordings of Neuronal Signals with Subthreshold Resolution
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671197694_4882
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The further development of neurochips requires high-density and high-resolution recordings that also allow neuronal signals to be observed over a long period of time. Expanding fields of network neuroscience and neuromorphic engineering demand the multiparallel and direct estimations of synaptic weights, and the key objective is to construct a device that also records subthreshold events. Recently, 3D nanostructures with a high aspect ratio have become a particularly suitable interface between neurons and electronic devices, since the excellent mechanical coupling to the neuronal cell membrane allows very high signal-to-noise ratio recordings. In the light of an increasing demand for a stable, noninvasive and long-term recording at subthreshold resolution, a combination of vertical nanostraws with nanocavities is presented. These structures provide a spontaneous tight coupling with rat cortical neurons, resulting in high amplitude sensitivity and postsynaptic resolution capability, as directly confirmed by combined patch-clamp and microelectrode array measurements.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cepkenovic, Bogdana
|0 P:(DE-Juel1)180680
|b 1
700 1 _ |a Milos, Frano
|0 P:(DE-Juel1)169481
|b 2
700 1 _ |a Bednár, Justus
|0 P:(DE-Juel1)187129
|b 3
700 1 _ |a Hassani, Hossein
|0 P:(DE-Juel1)165980
|b 4
700 1 _ |a Maybeck, Vanessa
|0 P:(DE-Juel1)128705
|b 5
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 6
|e Corresponding author
773 _ _ |a 10.1002/smll.202200053
|g Vol. 18, no. 22, p. 2200053 -
|0 PERI:(DE-600)2168935-0
|n 22
|p 2200053 -
|t Small
|v 18
|y 2022
|x 1613-6810
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916075/files/Re-revised%20manuscript%20Nanostraw%20Nanocavity%20MEA.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916075/files/Small%20-%202022%20-%20Shokoohimehr%20-%20High%E2%80%90Aspect%E2%80%90Ratio%20Nanoelectrodes%20Enable%20Long%E2%80%90Term%20Recordings%20of%20Neuronal%20Signals%20with.pdf
909 C O |o oai:juser.fz-juelich.de:916075
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165189
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)165189
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180680
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169481
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)169481
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187129
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165980
910 1 _ |a IBI-3
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165980
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128713
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b SMALL : 2021
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2021
|d 2022-11-15
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-15
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-15
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21