000916092 001__ 916092
000916092 005__ 20230302081514.0
000916092 0247_ $$2doi$$a10.5194/gi-11-451-2022
000916092 0247_ $$2ISSN$$a2193-0856
000916092 0247_ $$2ISSN$$a2193-0864
000916092 0247_ $$2Handle$$a2128/33359
000916092 0247_ $$2WOS$$aWOS:000898860000001
000916092 037__ $$aFZJ-2022-05932
000916092 082__ $$a550
000916092 1001_ $$0P:(DE-Juel1)168418$$aBrogi, Cosimo$$b0$$eCorresponding author$$ufzj
000916092 245__ $$aFeasibility of irrigation monitoring with cosmic-ray neutron sensors
000916092 260__ $$aGöttingen$$bCopernicus Publ.$$c2022
000916092 3367_ $$2DRIVER$$aarticle
000916092 3367_ $$2DataCite$$aOutput Types/Journal article
000916092 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672823392_11107
000916092 3367_ $$2BibTeX$$aARTICLE
000916092 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916092 3367_ $$00$$2EndNote$$aJournal Article
000916092 520__ $$aAccurate soil moisture (SM) monitoring is key in irrigation as it can greatly improve water use efficiency. Recently, cosmic-ray neutron sensors (CRNSs) have been recognized as a promising tool in SM monitoring due to their large footprint of several hectares. CRNSs also have great potential for irrigation applications, but few studies have investigated whether irrigation monitoring with CRNSs is feasible, especially for irrigated fields with a size smaller than the CRNS footprint. Therefore, the aim of this study is to use Monte Carlo simulations to investigate the feasibility of monitoring irrigation with CRNSs. This was achieved by simulating irrigation scenarios with different field dimensions (from 0.5 to 8 ha) and SM variations between 0.05 and 0.50 cm3 cm−3. Moreover, the energy-dependent response functions of eight moderators with different high-density polyethylene (HDPE) thickness or additional gadolinium thermal shielding were investigated. It was found that a considerable part of the neutrons that contribute to the CRNS footprint can originate outside an irrigated field, which is a challenge for irrigation monitoring with CRNSs. The use of thin HDPE moderators (e.g. 5 mm) generally resulted in a smaller footprint and thus stronger contributions from the irrigated area. However, a thicker 25 mm HDPE moderator with gadolinium shielding improved SM monitoring in irrigated fields due to a higher sensitivity of neutron counts with changing SM. This moderator and shielding set-up provided the highest chance of detecting irrigation events, especially when the initial SM was relatively low. However, variations in SM outside a 0.5 or 1 ha irrigated field (e.g. due to irrigation of neighbouring fields) can affect the count rate more than SM variations due to irrigation. This suggests the importance of retrieving SM data from the surrounding of a target field to obtain more meaningful information for supporting irrigation management, especially for small irrigated fields.
000916092 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000916092 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916092 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1$$ufzj
000916092 7001_ $$00000-0001-6098-3094$$aKöhli, Markus$$b2
000916092 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b3$$ufzj
000916092 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b4$$ufzj
000916092 7001_ $$0P:(DE-Juel1)164848$$aDombrowski, Olga$$b5$$ufzj
000916092 773__ $$0PERI:(DE-600)2690575-9$$a10.5194/gi-11-451-2022$$gVol. 11, no. 2, p. 451 - 469$$n2$$p451 - 469$$tGeoscientific instrumentation, methods and data systems$$v11$$x2193-0856$$y2022
000916092 8564_ $$uhttps://juser.fz-juelich.de/record/916092/files/gi-11-451-2022.pdf$$yOpenAccess
000916092 8767_ $$d2022-01-31$$eAPC$$jZahlung erfolgt
000916092 909CO $$ooai:juser.fz-juelich.de:916092$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000916092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168418$$aForschungszentrum Jülich$$b0$$kFZJ
000916092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000916092 9101_ $$0I:(DE-HGF)0$$60000-0001-6098-3094$$a Physikalisches Institut, Heidelberg University, Heidelberg, Germany$$b2
000916092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b3$$kFZJ
000916092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b4$$kFZJ
000916092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164848$$aForschungszentrum Jülich$$b5$$kFZJ
000916092 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000916092 9141_ $$y2022
000916092 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000916092 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916092 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI INSTRUM METH : 2021$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:47:50Z
000916092 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:47:50Z
000916092 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000916092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:47:50Z
000916092 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000916092 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000916092 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000916092 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000916092 920__ $$lyes
000916092 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000916092 9801_ $$aFullTexts
000916092 980__ $$ajournal
000916092 980__ $$aVDB
000916092 980__ $$aUNRESTRICTED
000916092 980__ $$aI:(DE-Juel1)IBG-3-20101118
000916092 980__ $$aAPC