000916119 001__ 916119
000916119 005__ 20230113085410.0
000916119 0247_ $$2doi$$a10.1103/PhysRevResearch.4.043147
000916119 0247_ $$2Handle$$a2128/33263
000916119 0247_ $$2WOS$$aWOS:000891819700004
000916119 037__ $$aFZJ-2022-05950
000916119 082__ $$a530
000916119 1001_ $$00000-0001-7728-0133$$aHeitmann, Tjark$$b0$$eCorresponding author
000916119 245__ $$aSpatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems
000916119 260__ $$aCollege Park, MD$$bAPS$$c2022
000916119 3367_ $$2DRIVER$$aarticle
000916119 3367_ $$2DataCite$$aOutput Types/Journal article
000916119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671698287_16740
000916119 3367_ $$2BibTeX$$aARTICLE
000916119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916119 3367_ $$00$$2EndNote$$aJournal Article
000916119 520__ $$aWe provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-1/2 systems with up to 40 lattice sites. Due to the exponentially growing Hilbert space, we find that for such system sizes even a single random state is sufficient to yield results with extremely low noise that is negligible for most practical purposes. In contrast, a classical analog of typicality is missing. In particular, we demonstrate that to obtain data with a similar level of noise in the classical case, extensive averaging over classical trajectories is required, no matter how large the system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find remarkably good agreement between quantum and classical dynamics. This applies not only to cases where both the quantum and classical models are nonintegrable but also to cases where the quantum spin-1/2 model is integrable and the corresponding classical s → ∞ model is not. Our analysis is based on the comparison of space-time profiles of the spin and energy correlation functions, where the agreement is found to hold not only in the bulk but also in the tails of the resulting density distribution. The mean-squared displacement of the density profiles reflects the nature of emerging hydrodynamics and is found to exhibit similar scaling for quantum and classical models.
000916119 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916119 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916119 7001_ $$00000-0003-2184-5275$$aRichter, Jonas$$b1
000916119 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2$$ufzj
000916119 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
000916119 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b4$$ufzj
000916119 7001_ $$00000-0003-0608-0884$$aSteinigeweg, Robin$$b5
000916119 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.4.043147$$gVol. 4, no. 4, p. 043147$$n4$$p043147$$tPhysical review research$$v4$$x2643-1564$$y2022
000916119 8564_ $$uhttps://juser.fz-juelich.de/record/916119/files/PhysRevResearch.4.043147.pdf$$yOpenAccess
000916119 909CO $$ooai:juser.fz-juelich.de:916119$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916119 9101_ $$0I:(DE-HGF)0$$60000-0001-7728-0133$$aExternal Institute$$b0$$kExtern
000916119 9101_ $$0I:(DE-HGF)0$$60000-0003-2184-5275$$aExternal Institute$$b1$$kExtern
000916119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ
000916119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000916119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b4$$kFZJ
000916119 9101_ $$0I:(DE-HGF)0$$60000-0003-0608-0884$$aExternal Institute$$b5$$kExtern
000916119 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916119 9141_ $$y2022
000916119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000916119 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916119 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-29
000916119 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000916119 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000916119 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-29
000916119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000916119 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916119 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-16T10:08:58Z
000916119 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-29
000916119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000916119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000916119 920__ $$lyes
000916119 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000916119 980__ $$ajournal
000916119 980__ $$aVDB
000916119 980__ $$aUNRESTRICTED
000916119 980__ $$aI:(DE-Juel1)JSC-20090406
000916119 9801_ $$aFullTexts