Hauptseite > Publikationsdatenbank > Spatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems > print |
001 | 916119 | ||
005 | 20230113085410.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevResearch.4.043147 |2 doi |
024 | 7 | _ | |a 2128/33263 |2 Handle |
024 | 7 | _ | |a WOS:000891819700004 |2 WOS |
037 | _ | _ | |a FZJ-2022-05950 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Heitmann, Tjark |0 0000-0001-7728-0133 |b 0 |e Corresponding author |
245 | _ | _ | |a Spatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems |
260 | _ | _ | |a College Park, MD |c 2022 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1671698287_16740 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-1/2 systems with up to 40 lattice sites. Due to the exponentially growing Hilbert space, we find that for such system sizes even a single random state is sufficient to yield results with extremely low noise that is negligible for most practical purposes. In contrast, a classical analog of typicality is missing. In particular, we demonstrate that to obtain data with a similar level of noise in the classical case, extensive averaging over classical trajectories is required, no matter how large the system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find remarkably good agreement between quantum and classical dynamics. This applies not only to cases where both the quantum and classical models are nonintegrable but also to cases where the quantum spin-1/2 model is integrable and the corresponding classical s → ∞ model is not. Our analysis is based on the comparison of space-time profiles of the spin and energy correlation functions, where the agreement is found to hold not only in the bulk but also in the tails of the resulting density distribution. The mean-squared displacement of the density profiles reflects the nature of emerging hydrodynamics and is found to exhibit similar scaling for quantum and classical models. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Richter, Jonas |0 0000-0003-2184-5275 |b 1 |
700 | 1 | _ | |a Jin, Fengping |0 P:(DE-Juel1)144355 |b 2 |u fzj |
700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |u fzj |
700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-Juel1)179169 |b 4 |u fzj |
700 | 1 | _ | |a Steinigeweg, Robin |0 0000-0003-0608-0884 |b 5 |
773 | _ | _ | |a 10.1103/PhysRevResearch.4.043147 |g Vol. 4, no. 4, p. 043147 |0 PERI:(DE-600)3004165-X |n 4 |p 043147 |t Physical review research |v 4 |y 2022 |x 2643-1564 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/916119/files/PhysRevResearch.4.043147.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:916119 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 0000-0001-7728-0133 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 0000-0003-2184-5275 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144355 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)179169 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 0000-0003-0608-0884 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-16T10:08:58Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-29 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|