001     916119
005     20230113085410.0
024 7 _ |a 10.1103/PhysRevResearch.4.043147
|2 doi
024 7 _ |a 2128/33263
|2 Handle
024 7 _ |a WOS:000891819700004
|2 WOS
037 _ _ |a FZJ-2022-05950
082 _ _ |a 530
100 1 _ |a Heitmann, Tjark
|0 0000-0001-7728-0133
|b 0
|e Corresponding author
245 _ _ |a Spatiotemporal dynamics of classical and quantum density profiles in low-dimensional spin systems
260 _ _ |a College Park, MD
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671698287_16740
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We provide a detailed comparison between the dynamics of high-temperature spatiotemporal correlation functions in quantum and classical spin models. In the quantum case, our large-scale numerics are based on the concept of quantum typicality, which exploits the fact that random pure quantum states can faithfully approximate ensemble averages, allowing the simulation of spin-1/2 systems with up to 40 lattice sites. Due to the exponentially growing Hilbert space, we find that for such system sizes even a single random state is sufficient to yield results with extremely low noise that is negligible for most practical purposes. In contrast, a classical analog of typicality is missing. In particular, we demonstrate that to obtain data with a similar level of noise in the classical case, extensive averaging over classical trajectories is required, no matter how large the system size. Focusing on (quasi-)one-dimensional spin chains and ladders, we find remarkably good agreement between quantum and classical dynamics. This applies not only to cases where both the quantum and classical models are nonintegrable but also to cases where the quantum spin-1/2 model is integrable and the corresponding classical s → ∞ model is not. Our analysis is based on the comparison of space-time profiles of the spin and energy correlation functions, where the agreement is found to hold not only in the bulk but also in the tails of the resulting density distribution. The mean-squared displacement of the density profiles reflects the nature of emerging hydrodynamics and is found to exhibit similar scaling for quantum and classical models.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Richter, Jonas
|0 0000-0003-2184-5275
|b 1
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
|u fzj
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-Juel1)179169
|b 4
|u fzj
700 1 _ |a Steinigeweg, Robin
|0 0000-0003-0608-0884
|b 5
773 _ _ |a 10.1103/PhysRevResearch.4.043147
|g Vol. 4, no. 4, p. 043147
|0 PERI:(DE-600)3004165-X
|n 4
|p 043147
|t Physical review research
|v 4
|y 2022
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/916119/files/PhysRevResearch.4.043147.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916119
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0001-7728-0133
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 0000-0003-2184-5275
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)179169
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0003-0608-0884
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21