001     916167
005     20240313095006.0
037 _ _ |a FZJ-2022-05987
100 1 _ |a Morales-Gregorio, Aitor
|0 P:(DE-Juel1)176593
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Society for Neuroscience meeting 2022
|g SfN
|c San Diego
|d 2022-11-12 - 2022-11-16
|w USA
245 _ _ |a Neural manifolds are modulated by feedback in macaque primary visual cortex during resting state
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1673265728_17708
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a High-dimensional brain activity is often organized into lower-dimensional neural manifolds, which can represent a plethora of behavioral variables, such as head direction, decision making, or hand movement. However, neural manifolds remain understudied in the visual cortex of primates, with studies rather focused on mice [1] or considering small samples of neurons in macaque [2].Feedback communication in the cortex has been observed in specific frequency bands [3]. Moreover, the feedback to V1 from higher visual areas is known to mediate visual attention for figure-ground segregation and contour integration in macaque [4]. Computational modeling shows that feedback may also influence neural manifolds by rotating them in a context-dependent manner to recover sensory inputs from different contexts [5]. However, whether feedback signals can modulate neural manifolds in the brain remains to be proven.Here, we study the neural manifolds of macaque (Macaca mulatta, N=4) V1 during the resting state. The macaques were seated in a dark room and thus received virtually no visual input. We used extracellular multi-electrode (Utah array) recordings with unprecedented spatio-temporal resolution [6]. Our analysis reveals that resting-state neural manifolds of macaque V1 are organized as two distinct high-dimensional clusters. We show that these clusters are primarily correlated with the behavior (eye closure) of the macaques and that the dimensionality of each of these clusters is significantly different, with higher dimensionality during the eyes-open periods. In addition, we use LFP coherence and Granger causality to estimate signatures of feedback from V4 and DP to V1 (in the beta range) and find that feedback signatures are significantly stronger during the eyes-open periods. Finally, we simulate a cortical microcircuit under resting-state conditions and show that feedback signals can modulate the state space of our model: the presence and absence of feedback lead to distinct clusters in the state space, in agreement with the experimental observations. Taken together, the data analysis and simulations suggest that feedback signals actively modulate neural manifolds in the visual cortex of the macaque.References:[1] Stringer et al. 2020. Nature 571, 361-365[2] Singh et al. 2008. Journal of Vision 8(8), 11[3] Bastos et al. 2015. Neuron 85 (2), 390-401[4] Poort et al. 2012. Neuron 75 (1), 143-156[5] Naumann et al. 2022. eLife 11, 76096[6] Chen et al. 2022. Scientific Data 9 (1), 77
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|x 0
|f POF IV
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 1
|f H2020-SGA-FETFLAG-HBP-2019
536 _ _ |a SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269)
|0 G:(GEPRIS)347572269
|c 347572269
|x 2
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 3
700 1 _ |a Kurth, Anno
|0 P:(DE-Juel1)176776
|b 1
|u fzj
700 1 _ |a Ito, Junji
|0 P:(DE-Juel1)144576
|b 2
|u fzj
700 1 _ |a Kleinjohann, Alexander
|0 P:(DE-Juel1)176920
|b 3
|u fzj
700 1 _ |a Barthélemy, Frédéric
|0 P:(DE-Juel1)162446
|b 4
|u fzj
700 1 _ |a Brochier, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 6
|u fzj
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 7
|u fzj
856 4 _ |u https://cattendee.abstractsonline.com/meeting/10619/Presentation/75849
909 C O |o oai:juser.fz-juelich.de:916167
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162446
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2022
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21